]> Cypherpunks.ru repositories - gostls13.git/blob - src/cmd/link/internal/loadpe/ldpe.go
2e9880bd6fc3299c5242a40ba6eb92cdef2ec7d1
[gostls13.git] / src / cmd / link / internal / loadpe / ldpe.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Package loadpe implements a PE/COFF file reader.
6 package loadpe
7
8 import (
9         "bytes"
10         "cmd/internal/bio"
11         "cmd/internal/objabi"
12         "cmd/internal/sys"
13         "cmd/link/internal/loader"
14         "cmd/link/internal/sym"
15         "debug/pe"
16         "encoding/binary"
17         "errors"
18         "fmt"
19         "io"
20         "strings"
21 )
22
23 const (
24         IMAGE_SYM_UNDEFINED              = 0
25         IMAGE_SYM_ABSOLUTE               = -1
26         IMAGE_SYM_DEBUG                  = -2
27         IMAGE_SYM_TYPE_NULL              = 0
28         IMAGE_SYM_TYPE_VOID              = 1
29         IMAGE_SYM_TYPE_CHAR              = 2
30         IMAGE_SYM_TYPE_SHORT             = 3
31         IMAGE_SYM_TYPE_INT               = 4
32         IMAGE_SYM_TYPE_LONG              = 5
33         IMAGE_SYM_TYPE_FLOAT             = 6
34         IMAGE_SYM_TYPE_DOUBLE            = 7
35         IMAGE_SYM_TYPE_STRUCT            = 8
36         IMAGE_SYM_TYPE_UNION             = 9
37         IMAGE_SYM_TYPE_ENUM              = 10
38         IMAGE_SYM_TYPE_MOE               = 11
39         IMAGE_SYM_TYPE_BYTE              = 12
40         IMAGE_SYM_TYPE_WORD              = 13
41         IMAGE_SYM_TYPE_UINT              = 14
42         IMAGE_SYM_TYPE_DWORD             = 15
43         IMAGE_SYM_TYPE_PCODE             = 32768
44         IMAGE_SYM_DTYPE_NULL             = 0
45         IMAGE_SYM_DTYPE_POINTER          = 1
46         IMAGE_SYM_DTYPE_FUNCTION         = 2
47         IMAGE_SYM_DTYPE_ARRAY            = 3
48         IMAGE_SYM_CLASS_END_OF_FUNCTION  = -1
49         IMAGE_SYM_CLASS_NULL             = 0
50         IMAGE_SYM_CLASS_AUTOMATIC        = 1
51         IMAGE_SYM_CLASS_EXTERNAL         = 2
52         IMAGE_SYM_CLASS_STATIC           = 3
53         IMAGE_SYM_CLASS_REGISTER         = 4
54         IMAGE_SYM_CLASS_EXTERNAL_DEF     = 5
55         IMAGE_SYM_CLASS_LABEL            = 6
56         IMAGE_SYM_CLASS_UNDEFINED_LABEL  = 7
57         IMAGE_SYM_CLASS_MEMBER_OF_STRUCT = 8
58         IMAGE_SYM_CLASS_ARGUMENT         = 9
59         IMAGE_SYM_CLASS_STRUCT_TAG       = 10
60         IMAGE_SYM_CLASS_MEMBER_OF_UNION  = 11
61         IMAGE_SYM_CLASS_UNION_TAG        = 12
62         IMAGE_SYM_CLASS_TYPE_DEFINITION  = 13
63         IMAGE_SYM_CLASS_UNDEFINED_STATIC = 14
64         IMAGE_SYM_CLASS_ENUM_TAG         = 15
65         IMAGE_SYM_CLASS_MEMBER_OF_ENUM   = 16
66         IMAGE_SYM_CLASS_REGISTER_PARAM   = 17
67         IMAGE_SYM_CLASS_BIT_FIELD        = 18
68         IMAGE_SYM_CLASS_FAR_EXTERNAL     = 68 /* Not in PECOFF v8 spec */
69         IMAGE_SYM_CLASS_BLOCK            = 100
70         IMAGE_SYM_CLASS_FUNCTION         = 101
71         IMAGE_SYM_CLASS_END_OF_STRUCT    = 102
72         IMAGE_SYM_CLASS_FILE             = 103
73         IMAGE_SYM_CLASS_SECTION          = 104
74         IMAGE_SYM_CLASS_WEAK_EXTERNAL    = 105
75         IMAGE_SYM_CLASS_CLR_TOKEN        = 107
76         IMAGE_REL_I386_ABSOLUTE          = 0x0000
77         IMAGE_REL_I386_DIR16             = 0x0001
78         IMAGE_REL_I386_REL16             = 0x0002
79         IMAGE_REL_I386_DIR32             = 0x0006
80         IMAGE_REL_I386_DIR32NB           = 0x0007
81         IMAGE_REL_I386_SEG12             = 0x0009
82         IMAGE_REL_I386_SECTION           = 0x000A
83         IMAGE_REL_I386_SECREL            = 0x000B
84         IMAGE_REL_I386_TOKEN             = 0x000C
85         IMAGE_REL_I386_SECREL7           = 0x000D
86         IMAGE_REL_I386_REL32             = 0x0014
87         IMAGE_REL_AMD64_ABSOLUTE         = 0x0000
88         IMAGE_REL_AMD64_ADDR64           = 0x0001
89         IMAGE_REL_AMD64_ADDR32           = 0x0002
90         IMAGE_REL_AMD64_ADDR32NB         = 0x0003
91         IMAGE_REL_AMD64_REL32            = 0x0004
92         IMAGE_REL_AMD64_REL32_1          = 0x0005
93         IMAGE_REL_AMD64_REL32_2          = 0x0006
94         IMAGE_REL_AMD64_REL32_3          = 0x0007
95         IMAGE_REL_AMD64_REL32_4          = 0x0008
96         IMAGE_REL_AMD64_REL32_5          = 0x0009
97         IMAGE_REL_AMD64_SECTION          = 0x000A
98         IMAGE_REL_AMD64_SECREL           = 0x000B
99         IMAGE_REL_AMD64_SECREL7          = 0x000C
100         IMAGE_REL_AMD64_TOKEN            = 0x000D
101         IMAGE_REL_AMD64_SREL32           = 0x000E
102         IMAGE_REL_AMD64_PAIR             = 0x000F
103         IMAGE_REL_AMD64_SSPAN32          = 0x0010
104         IMAGE_REL_ARM_ABSOLUTE           = 0x0000
105         IMAGE_REL_ARM_ADDR32             = 0x0001
106         IMAGE_REL_ARM_ADDR32NB           = 0x0002
107         IMAGE_REL_ARM_BRANCH24           = 0x0003
108         IMAGE_REL_ARM_BRANCH11           = 0x0004
109         IMAGE_REL_ARM_SECTION            = 0x000E
110         IMAGE_REL_ARM_SECREL             = 0x000F
111         IMAGE_REL_ARM_MOV32              = 0x0010
112         IMAGE_REL_THUMB_MOV32            = 0x0011
113         IMAGE_REL_THUMB_BRANCH20         = 0x0012
114         IMAGE_REL_THUMB_BRANCH24         = 0x0014
115         IMAGE_REL_THUMB_BLX23            = 0x0015
116         IMAGE_REL_ARM_PAIR               = 0x0016
117         IMAGE_REL_ARM64_ABSOLUTE         = 0x0000
118         IMAGE_REL_ARM64_ADDR32           = 0x0001
119         IMAGE_REL_ARM64_ADDR32NB         = 0x0002
120         IMAGE_REL_ARM64_BRANCH26         = 0x0003
121         IMAGE_REL_ARM64_PAGEBASE_REL21   = 0x0004
122         IMAGE_REL_ARM64_REL21            = 0x0005
123         IMAGE_REL_ARM64_PAGEOFFSET_12A   = 0x0006
124         IMAGE_REL_ARM64_PAGEOFFSET_12L   = 0x0007
125         IMAGE_REL_ARM64_SECREL           = 0x0008
126         IMAGE_REL_ARM64_SECREL_LOW12A    = 0x0009
127         IMAGE_REL_ARM64_SECREL_HIGH12A   = 0x000A
128         IMAGE_REL_ARM64_SECREL_LOW12L    = 0x000B
129         IMAGE_REL_ARM64_TOKEN            = 0x000C
130         IMAGE_REL_ARM64_SECTION          = 0x000D
131         IMAGE_REL_ARM64_ADDR64           = 0x000E
132         IMAGE_REL_ARM64_BRANCH19         = 0x000F
133         IMAGE_REL_ARM64_BRANCH14         = 0x0010
134         IMAGE_REL_ARM64_REL32            = 0x0011
135 )
136
137 const (
138         // When stored into the PLT value for a symbol, this token tells
139         // windynrelocsym to redirect direct references to this symbol to a stub
140         // that loads from the corresponding import symbol and then does
141         // a jump to the loaded value.
142         CreateImportStubPltToken = -2
143
144         // When stored into the GOT value for an import symbol __imp_X this
145         // token tells windynrelocsym to redirect references to the
146         // underlying DYNIMPORT symbol X.
147         RedirectToDynImportGotToken = -2
148 )
149
150 // TODO(brainman): maybe just add ReadAt method to bio.Reader instead of creating peBiobuf
151
152 // peBiobuf makes bio.Reader look like io.ReaderAt.
153 type peBiobuf bio.Reader
154
155 func (f *peBiobuf) ReadAt(p []byte, off int64) (int, error) {
156         ret := ((*bio.Reader)(f)).MustSeek(off, 0)
157         if ret < 0 {
158                 return 0, errors.New("fail to seek")
159         }
160         n, err := f.Read(p)
161         if err != nil {
162                 return 0, err
163         }
164         return n, nil
165 }
166
167 // makeUpdater creates a loader.SymbolBuilder if one hasn't been created previously.
168 // We use this to lazily make SymbolBuilders as we don't always need a builder, and creating them for all symbols might be an error.
169 func makeUpdater(l *loader.Loader, bld *loader.SymbolBuilder, s loader.Sym) *loader.SymbolBuilder {
170         if bld != nil {
171                 return bld
172         }
173         bld = l.MakeSymbolUpdater(s)
174         return bld
175 }
176
177 // peImportSymsState tracks the set of DLL import symbols we've seen
178 // while reading host objects. We create a singleton instance of this
179 // type, which will persist across multiple host objects.
180 type peImportSymsState struct {
181
182         // Text and non-text sections read in by the host object loader.
183         secSyms []loader.Sym
184
185         // SDYNIMPORT symbols encountered along the way
186         dynimports map[loader.Sym]struct{}
187
188         // Loader and arch, for use in postprocessing.
189         l    *loader.Loader
190         arch *sys.Arch
191 }
192
193 var importSymsState *peImportSymsState
194
195 func createImportSymsState(l *loader.Loader, arch *sys.Arch) {
196         if importSymsState != nil {
197                 return
198         }
199         importSymsState = &peImportSymsState{
200                 dynimports: make(map[loader.Sym]struct{}),
201                 l:          l,
202                 arch:       arch,
203         }
204 }
205
206 // peLoaderState holds various bits of useful state information needed
207 // while loading a single PE object file.
208 type peLoaderState struct {
209         l               *loader.Loader
210         arch            *sys.Arch
211         f               *pe.File
212         pn              string
213         sectsyms        map[*pe.Section]loader.Sym
214         comdats         map[uint16]int64 // key is section index, val is size
215         sectdata        map[*pe.Section][]byte
216         localSymVersion int
217 }
218
219 // comdatDefinitions records the names of symbols for which we've
220 // previously seen a definition in COMDAT. Key is symbol name, value
221 // is symbol size (or -1 if we're using the "any" strategy).
222 var comdatDefinitions map[string]int64
223
224 // Load loads the PE file pn from input.
225 // Symbols from the object file are created via the loader 'l',
226 // and a slice of the text symbols is returned.
227 // If an .rsrc section or set of .rsrc$xx sections is found, its symbols are
228 // returned as rsrc.
229 func Load(l *loader.Loader, arch *sys.Arch, localSymVersion int, input *bio.Reader, pkg string, length int64, pn string) (textp []loader.Sym, rsrc []loader.Sym, err error) {
230         state := &peLoaderState{
231                 l:               l,
232                 arch:            arch,
233                 sectsyms:        make(map[*pe.Section]loader.Sym),
234                 sectdata:        make(map[*pe.Section][]byte),
235                 localSymVersion: localSymVersion,
236                 pn:              pn,
237         }
238         createImportSymsState(state.l, state.arch)
239         if comdatDefinitions == nil {
240                 comdatDefinitions = make(map[string]int64)
241         }
242
243         // Some input files are archives containing multiple of
244         // object files, and pe.NewFile seeks to the start of
245         // input file and get confused. Create section reader
246         // to stop pe.NewFile looking before current position.
247         sr := io.NewSectionReader((*peBiobuf)(input), input.Offset(), 1<<63-1)
248
249         // TODO: replace pe.NewFile with pe.Load (grep for "add Load function" in debug/pe for details)
250         f, err := pe.NewFile(sr)
251         if err != nil {
252                 return nil, nil, err
253         }
254         defer f.Close()
255         state.f = f
256
257         // TODO return error if found .cormeta
258
259         // create symbols for mapped sections
260         for _, sect := range f.Sections {
261                 if sect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
262                         continue
263                 }
264
265                 if sect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
266                         // This has been seen for .idata sections, which we
267                         // want to ignore. See issues 5106 and 5273.
268                         continue
269                 }
270
271                 name := fmt.Sprintf("%s(%s)", pkg, sect.Name)
272                 s := state.l.LookupOrCreateCgoExport(name, localSymVersion)
273                 bld := l.MakeSymbolUpdater(s)
274
275                 switch sect.Characteristics & (pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE | pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE) {
276                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ: //.rdata
277                         bld.SetType(sym.SRODATA)
278
279                 case pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.bss
280                         bld.SetType(sym.SNOPTRBSS)
281
282                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.data
283                         bld.SetType(sym.SNOPTRDATA)
284
285                 case pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE | pe.IMAGE_SCN_MEM_READ: //.text
286                         bld.SetType(sym.STEXT)
287
288                 default:
289                         return nil, nil, fmt.Errorf("unexpected flags %#06x for PE section %s", sect.Characteristics, sect.Name)
290                 }
291
292                 if bld.Type() != sym.SNOPTRBSS {
293                         data, err := sect.Data()
294                         if err != nil {
295                                 return nil, nil, err
296                         }
297                         state.sectdata[sect] = data
298                         bld.SetData(data)
299                 }
300                 bld.SetSize(int64(sect.Size))
301                 state.sectsyms[sect] = s
302                 if sect.Name == ".rsrc" || strings.HasPrefix(sect.Name, ".rsrc$") {
303                         rsrc = append(rsrc, s)
304                 }
305         }
306
307         // Make a prepass over the symbols to collect info about COMDAT symbols.
308         if err := state.preprocessSymbols(); err != nil {
309                 return nil, nil, err
310         }
311
312         // load relocations
313         for _, rsect := range f.Sections {
314                 if _, found := state.sectsyms[rsect]; !found {
315                         continue
316                 }
317                 if rsect.NumberOfRelocations == 0 {
318                         continue
319                 }
320                 if rsect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
321                         continue
322                 }
323                 if rsect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
324                         // This has been seen for .idata sections, which we
325                         // want to ignore. See issues 5106 and 5273.
326                         continue
327                 }
328
329                 splitResources := strings.HasPrefix(rsect.Name, ".rsrc$")
330                 sb := l.MakeSymbolUpdater(state.sectsyms[rsect])
331                 for j, r := range rsect.Relocs {
332                         if int(r.SymbolTableIndex) >= len(f.COFFSymbols) {
333                                 return nil, nil, fmt.Errorf("relocation number %d symbol index idx=%d cannot be large then number of symbols %d", j, r.SymbolTableIndex, len(f.COFFSymbols))
334                         }
335                         pesym := &f.COFFSymbols[r.SymbolTableIndex]
336                         _, gosym, err := state.readpesym(pesym)
337                         if err != nil {
338                                 return nil, nil, err
339                         }
340                         if gosym == 0 {
341                                 name, err := pesym.FullName(f.StringTable)
342                                 if err != nil {
343                                         name = string(pesym.Name[:])
344                                 }
345                                 return nil, nil, fmt.Errorf("reloc of invalid sym %s idx=%d type=%d", name, r.SymbolTableIndex, pesym.Type)
346                         }
347
348                         rSym := gosym
349                         rSize := uint8(4)
350                         rOff := int32(r.VirtualAddress)
351                         var rAdd int64
352                         var rType objabi.RelocType
353                         switch arch.Family {
354                         default:
355                                 return nil, nil, fmt.Errorf("%s: unsupported arch %v", pn, arch.Family)
356                         case sys.I386, sys.AMD64:
357                                 switch r.Type {
358                                 default:
359                                         return nil, nil, fmt.Errorf("%s: %v: unknown relocation type %v", pn, state.sectsyms[rsect], r.Type)
360
361                                 case IMAGE_REL_I386_REL32, IMAGE_REL_AMD64_REL32,
362                                         IMAGE_REL_AMD64_ADDR32, // R_X86_64_PC32
363                                         IMAGE_REL_AMD64_ADDR32NB:
364                                         rType = objabi.R_PCREL
365
366                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
367
368                                 case IMAGE_REL_I386_DIR32NB, IMAGE_REL_I386_DIR32:
369                                         rType = objabi.R_ADDR
370
371                                         // load addend from image
372                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
373
374                                 case IMAGE_REL_AMD64_ADDR64: // R_X86_64_64
375                                         rSize = 8
376
377                                         rType = objabi.R_ADDR
378
379                                         // load addend from image
380                                         rAdd = int64(binary.LittleEndian.Uint64(state.sectdata[rsect][rOff:]))
381                                 }
382
383                         case sys.ARM:
384                                 switch r.Type {
385                                 default:
386                                         return nil, nil, fmt.Errorf("%s: %v: unknown ARM relocation type %v", pn, state.sectsyms[rsect], r.Type)
387
388                                 case IMAGE_REL_ARM_SECREL:
389                                         rType = objabi.R_PCREL
390
391                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
392
393                                 case IMAGE_REL_ARM_ADDR32, IMAGE_REL_ARM_ADDR32NB:
394                                         rType = objabi.R_ADDR
395
396                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
397
398                                 case IMAGE_REL_ARM_BRANCH24:
399                                         rType = objabi.R_CALLARM
400
401                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
402                                 }
403
404                         case sys.ARM64:
405                                 switch r.Type {
406                                 default:
407                                         return nil, nil, fmt.Errorf("%s: %v: unknown ARM64 relocation type %v", pn, state.sectsyms[rsect], r.Type)
408
409                                 case IMAGE_REL_ARM64_ADDR32, IMAGE_REL_ARM64_ADDR32NB:
410                                         rType = objabi.R_ADDR
411
412                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
413                                 }
414                         }
415
416                         // ld -r could generate multiple section symbols for the
417                         // same section but with different values, we have to take
418                         // that into account, or in the case of split resources,
419                         // the section and its symbols are split into two sections.
420                         if issect(pesym) || splitResources {
421                                 rAdd += int64(pesym.Value)
422                         }
423
424                         rel, _ := sb.AddRel(rType)
425                         rel.SetOff(rOff)
426                         rel.SetSiz(rSize)
427                         rel.SetSym(rSym)
428                         rel.SetAdd(rAdd)
429                 }
430
431                 sb.SortRelocs()
432         }
433
434         // enter sub-symbols into symbol table.
435         for i, numaux := 0, 0; i < len(f.COFFSymbols); i += numaux + 1 {
436                 pesym := &f.COFFSymbols[i]
437
438                 numaux = int(pesym.NumberOfAuxSymbols)
439
440                 name, err := pesym.FullName(f.StringTable)
441                 if err != nil {
442                         return nil, nil, err
443                 }
444                 if name == "" {
445                         continue
446                 }
447                 if issect(pesym) {
448                         continue
449                 }
450                 if int(pesym.SectionNumber) > len(f.Sections) {
451                         continue
452                 }
453                 if pesym.SectionNumber == IMAGE_SYM_DEBUG {
454                         continue
455                 }
456                 if pesym.SectionNumber == IMAGE_SYM_ABSOLUTE && bytes.Equal(pesym.Name[:], []byte("@feat.00")) {
457                         // Microsoft's linker looks at whether all input objects have an empty
458                         // section called @feat.00. If all of them do, then it enables SEH;
459                         // otherwise it doesn't enable that feature. So, since around the Windows
460                         // XP SP2 era, most tools that make PE objects just tack on that section,
461                         // so that it won't gimp Microsoft's linker logic. Go doesn't support SEH,
462                         // so in theory, none of this really matters to us. But actually, if the
463                         // linker tries to ingest an object with @feat.00 -- which are produced by
464                         // LLVM's resource compiler, for example -- it chokes because of the
465                         // IMAGE_SYM_ABSOLUTE section that it doesn't know how to deal with. Since
466                         // @feat.00 is just a marking anyway, skip IMAGE_SYM_ABSOLUTE sections that
467                         // are called @feat.00.
468                         continue
469                 }
470                 var sect *pe.Section
471                 if pesym.SectionNumber > 0 {
472                         sect = f.Sections[pesym.SectionNumber-1]
473                         if _, found := state.sectsyms[sect]; !found {
474                                 continue
475                         }
476                 }
477
478                 bld, s, err := state.readpesym(pesym)
479                 if err != nil {
480                         return nil, nil, err
481                 }
482
483                 if pesym.SectionNumber == 0 { // extern
484                         if l.SymType(s) == sym.SXREF && pesym.Value > 0 { // global data
485                                 bld = makeUpdater(l, bld, s)
486                                 bld.SetType(sym.SNOPTRDATA)
487                                 bld.SetSize(int64(pesym.Value))
488                         }
489
490                         continue
491                 } else if pesym.SectionNumber > 0 && int(pesym.SectionNumber) <= len(f.Sections) {
492                         sect = f.Sections[pesym.SectionNumber-1]
493                         if _, found := state.sectsyms[sect]; !found {
494                                 return nil, nil, fmt.Errorf("%s: %v: missing sect.sym", pn, s)
495                         }
496                 } else {
497                         return nil, nil, fmt.Errorf("%s: %v: sectnum < 0!", pn, s)
498                 }
499
500                 if sect == nil {
501                         return nil, nil, nil
502                 }
503
504                 // Check for COMDAT symbol.
505                 if sz, ok1 := state.comdats[uint16(pesym.SectionNumber-1)]; ok1 {
506                         if psz, ok2 := comdatDefinitions[l.SymName(s)]; ok2 {
507                                 if sz == psz {
508                                         //  OK to discard, we've seen an instance
509                                         // already.
510                                         continue
511                                 }
512                         }
513                 }
514                 if l.OuterSym(s) != 0 {
515                         if l.AttrDuplicateOK(s) {
516                                 continue
517                         }
518                         outerName := l.SymName(l.OuterSym(s))
519                         sectName := l.SymName(state.sectsyms[sect])
520                         return nil, nil, fmt.Errorf("%s: duplicate symbol reference: %s in both %s and %s", pn, l.SymName(s), outerName, sectName)
521                 }
522
523                 bld = makeUpdater(l, bld, s)
524                 sectsym := state.sectsyms[sect]
525                 bld.SetType(l.SymType(sectsym))
526                 l.AddInteriorSym(sectsym, s)
527                 bld.SetValue(int64(pesym.Value))
528                 bld.SetSize(4)
529                 if l.SymType(sectsym) == sym.STEXT {
530                         if bld.External() && !bld.DuplicateOK() {
531                                 return nil, nil, fmt.Errorf("%s: duplicate symbol definition", l.SymName(s))
532                         }
533                         bld.SetExternal(true)
534                 }
535                 if sz, ok := state.comdats[uint16(pesym.SectionNumber-1)]; ok {
536                         // This is a COMDAT definition. Record that we're picking
537                         // this instance so that we can ignore future defs.
538                         if _, ok := comdatDefinitions[l.SymName(s)]; ok {
539                                 return nil, nil, fmt.Errorf("internal error: preexisting COMDAT definition for %q", name)
540                         }
541                         comdatDefinitions[l.SymName(s)] = sz
542                 }
543         }
544
545         // Sort outer lists by address, adding to textp.
546         // This keeps textp in increasing address order.
547         for _, sect := range f.Sections {
548                 s := state.sectsyms[sect]
549                 if s == 0 {
550                         continue
551                 }
552                 l.SortSub(s)
553                 importSymsState.secSyms = append(importSymsState.secSyms, s)
554                 if l.SymType(s) == sym.STEXT {
555                         for ; s != 0; s = l.SubSym(s) {
556                                 if l.AttrOnList(s) {
557                                         return nil, nil, fmt.Errorf("symbol %s listed multiple times", l.SymName(s))
558                                 }
559                                 l.SetAttrOnList(s, true)
560                                 textp = append(textp, s)
561                         }
562                 }
563         }
564
565         return textp, rsrc, nil
566 }
567
568 // PostProcessImports works to resolve inconsistencies with DLL import
569 // symbols; it is needed when building with more "modern" C compilers
570 // with internal linkage.
571 //
572 // Background: DLL import symbols are data (SNOPTRDATA) symbols whose
573 // name is of the form "__imp_XXX", which contain a pointer/reference
574 // to symbol XXX. It's possible to have import symbols for both data
575 // symbols ("__imp__fmode") and text symbols ("__imp_CreateEventA").
576 // In some case import symbols are just references to some external
577 // thing, and in other cases we see actual definitions of import
578 // symbols when reading host objects.
579 //
580 // Previous versions of the linker would in most cases immediately
581 // "forward" import symbol references, e.g. treat a references to
582 // "__imp_XXX" a references to "XXX", however this doesn't work well
583 // with more modern compilers, where you can sometimes see import
584 // symbols that are defs (as opposed to external refs).
585 //
586 // The main actions taken below are to search for references to
587 // SDYNIMPORT symbols in host object text/data sections and flag the
588 // symbols for later fixup. When we see a reference to an import
589 // symbol __imp_XYZ where XYZ corresponds to some SDYNIMPORT symbol,
590 // we flag the symbol (via GOT setting) so that it can be redirected
591 // to XYZ later in windynrelocsym. When we see a direct reference to
592 // an SDYNIMPORT symbol XYZ, we also flag the symbol (via PLT setting)
593 // to indicated that the reference will need to be redirected to a
594 // stub.
595 func PostProcessImports() error {
596         ldr := importSymsState.l
597         arch := importSymsState.arch
598         keeprelocneeded := make(map[loader.Sym]loader.Sym)
599         for _, s := range importSymsState.secSyms {
600                 isText := ldr.SymType(s) == sym.STEXT
601                 relocs := ldr.Relocs(s)
602                 for i := 0; i < relocs.Count(); i++ {
603                         r := relocs.At(i)
604                         rs := r.Sym()
605                         if ldr.SymType(rs) == sym.SDYNIMPORT {
606                                 // Tag the symbol for later stub generation.
607                                 ldr.SetPlt(rs, CreateImportStubPltToken)
608                                 continue
609                         }
610                         isym, err := LookupBaseFromImport(rs, ldr, arch)
611                         if err != nil {
612                                 return err
613                         }
614                         if isym == 0 {
615                                 continue
616                         }
617                         if ldr.SymType(isym) != sym.SDYNIMPORT {
618                                 continue
619                         }
620                         // For non-text symbols, forward the reference from __imp_X to
621                         // X immediately.
622                         if !isText {
623                                 r.SetSym(isym)
624                                 continue
625                         }
626                         // Flag this imp symbol to be processed later in windynrelocsym.
627                         ldr.SetGot(rs, RedirectToDynImportGotToken)
628                         // Consistency check: should be no PLT token here.
629                         splt := ldr.SymPlt(rs)
630                         if splt != -1 {
631                                 return fmt.Errorf("internal error: import symbol %q has invalid PLT setting %d", ldr.SymName(rs), splt)
632                         }
633                         // Flag for dummy relocation.
634                         keeprelocneeded[rs] = isym
635                 }
636         }
637         for k, v := range keeprelocneeded {
638                 sb := ldr.MakeSymbolUpdater(k)
639                 r, _ := sb.AddRel(objabi.R_KEEP)
640                 r.SetSym(v)
641         }
642         importSymsState = nil
643         return nil
644 }
645
646 func issect(s *pe.COFFSymbol) bool {
647         return s.StorageClass == IMAGE_SYM_CLASS_STATIC && s.Type == 0 && s.Name[0] == '.'
648 }
649
650 func (state *peLoaderState) readpesym(pesym *pe.COFFSymbol) (*loader.SymbolBuilder, loader.Sym, error) {
651         symname, err := pesym.FullName(state.f.StringTable)
652         if err != nil {
653                 return nil, 0, err
654         }
655         var name string
656         if issect(pesym) {
657                 name = state.l.SymName(state.sectsyms[state.f.Sections[pesym.SectionNumber-1]])
658         } else {
659                 name = symname
660                 // A note on the "_main" exclusion below: the main routine
661                 // defined by the Go runtime is named "_main", not "main", so
662                 // when reading references to _main from a host object we want
663                 // to avoid rewriting "_main" to "main" in this specific
664                 // instance. See #issuecomment-1143698749 on #35006 for more
665                 // details on this problem.
666                 if state.arch.Family == sys.I386 && name[0] == '_' && name != "_main" && !strings.HasPrefix(name, "__imp_") {
667                         name = name[1:] // _Name => Name
668                 }
669         }
670
671         // remove last @XXX
672         if i := strings.LastIndex(name, "@"); i >= 0 {
673                 name = name[:i]
674         }
675
676         var s loader.Sym
677         var bld *loader.SymbolBuilder
678         // Microsoft's PE documentation is contradictory. It says that the symbol's complex type
679         // is stored in the pesym.Type most significant byte, but MSVC, LLVM, and mingw store it
680         // in the 4 high bits of the less significant byte.
681         switch uint8(pesym.Type&0xf0) >> 4 {
682         default:
683                 return nil, 0, fmt.Errorf("%s: invalid symbol type %d", symname, pesym.Type)
684
685         case IMAGE_SYM_DTYPE_FUNCTION, IMAGE_SYM_DTYPE_NULL:
686                 switch pesym.StorageClass {
687                 case IMAGE_SYM_CLASS_EXTERNAL: //global
688                         s = state.l.LookupOrCreateCgoExport(name, 0)
689
690                 case IMAGE_SYM_CLASS_NULL, IMAGE_SYM_CLASS_STATIC, IMAGE_SYM_CLASS_LABEL:
691                         s = state.l.LookupOrCreateCgoExport(name, state.localSymVersion)
692                         bld = makeUpdater(state.l, bld, s)
693                         bld.SetDuplicateOK(true)
694
695                 default:
696                         return nil, 0, fmt.Errorf("%s: invalid symbol binding %d", symname, pesym.StorageClass)
697                 }
698         }
699
700         if s != 0 && state.l.SymType(s) == 0 && (pesym.StorageClass != IMAGE_SYM_CLASS_STATIC || pesym.Value != 0) {
701                 bld = makeUpdater(state.l, bld, s)
702                 bld.SetType(sym.SXREF)
703         }
704
705         return bld, s, nil
706 }
707
708 // preprocessSymbols walks the COFF symbols for the PE file we're
709 // reading and looks for cases where we have both a symbol definition
710 // for "XXX" and an "__imp_XXX" symbol, recording these cases in a map
711 // in the state struct. This information will be used in readpesym()
712 // above to give such symbols special treatment. This function also
713 // gathers information about COMDAT sections/symbols for later use
714 // in readpesym().
715 func (state *peLoaderState) preprocessSymbols() error {
716
717         // Locate comdat sections.
718         state.comdats = make(map[uint16]int64)
719         for i, s := range state.f.Sections {
720                 if s.Characteristics&uint32(pe.IMAGE_SCN_LNK_COMDAT) != 0 {
721                         state.comdats[uint16(i)] = int64(s.Size)
722                 }
723         }
724
725         // Examine symbol defs.
726         for i, numaux := 0, 0; i < len(state.f.COFFSymbols); i += numaux + 1 {
727                 pesym := &state.f.COFFSymbols[i]
728                 numaux = int(pesym.NumberOfAuxSymbols)
729                 if pesym.SectionNumber == 0 { // extern
730                         continue
731                 }
732                 symname, err := pesym.FullName(state.f.StringTable)
733                 if err != nil {
734                         return err
735                 }
736                 if _, isc := state.comdats[uint16(pesym.SectionNumber-1)]; !isc {
737                         continue
738                 }
739                 if pesym.StorageClass != uint8(IMAGE_SYM_CLASS_STATIC) {
740                         continue
741                 }
742                 // This symbol corresponds to a COMDAT section. Read the
743                 // aux data for it.
744                 auxsymp, err := state.f.COFFSymbolReadSectionDefAux(i)
745                 if err != nil {
746                         return fmt.Errorf("unable to read aux info for section def symbol %d %s: pe.COFFSymbolReadComdatInfo returns %v", i, symname, err)
747                 }
748                 if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_SAME_SIZE {
749                         // This is supported.
750                 } else if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_ANY {
751                         // Also supported.
752                         state.comdats[uint16(pesym.SectionNumber-1)] = int64(-1)
753                 } else {
754                         // We don't support any of the other strategies at the
755                         // moment. I suspect that we may need to also support
756                         // "associative", we'll see.
757                         return fmt.Errorf("internal error: unsupported COMDAT selection strategy found in path=%s sec=%d strategy=%d idx=%d, please file a bug", state.pn, auxsymp.SecNum, auxsymp.Selection, i)
758                 }
759         }
760         return nil
761 }
762
763 // LookupBaseFromImport examines the symbol "s" to see if it
764 // corresponds to an import symbol (name of the form "__imp_XYZ") and
765 // if so, it looks up the underlying target of the import symbol and
766 // returns it. An error is returned if the symbol is of the form
767 // "__imp_XYZ" but no XYZ can be found.
768 func LookupBaseFromImport(s loader.Sym, ldr *loader.Loader, arch *sys.Arch) (loader.Sym, error) {
769         sname := ldr.SymName(s)
770         if !strings.HasPrefix(sname, "__imp_") {
771                 return 0, nil
772         }
773         basename := sname[len("__imp_"):]
774         if arch.Family == sys.I386 && basename[0] == '_' {
775                 basename = basename[1:] // _Name => Name
776         }
777         isym := ldr.Lookup(basename, 0)
778         if isym == 0 {
779                 return 0, fmt.Errorf("internal error: import symbol %q with no underlying sym", sname)
780         }
781         return isym, nil
782 }