]> Cypherpunks.ru repositories - gostls13.git/blobdiff - src/crypto/tls/auth.go
Use GoGOST's PublicKey wrappers
[gostls13.git] / src / crypto / tls / auth.go
index 88face4cdee025676b512bf706e254c7129edb3a..58fd92cb3d9e96e3962fb296b75c810e4c0fc50e 100644 (file)
 package tls
 
 import (
+       "bytes"
        "crypto"
        "crypto/ecdsa"
+       "crypto/ed25519"
+       "crypto/elliptic"
        "crypto/rsa"
-       "encoding/asn1"
        "errors"
        "fmt"
-)
+       "hash"
+       "io"
 
-// pickSignatureAlgorithm selects a signature algorithm that is compatible with
-// the given public key and the list of algorithms from the peer and this side.
-// The lists of signature algorithms (peerSigAlgs and ourSigAlgs) are ignored
-// for tlsVersion < VersionTLS12.
-//
-// The returned SignatureScheme codepoint is only meaningful for TLS 1.2,
-// previous TLS versions have a fixed hash function.
-func pickSignatureAlgorithm(pubkey crypto.PublicKey, peerSigAlgs, ourSigAlgs []SignatureScheme, tlsVersion uint16) (sigAlg SignatureScheme, sigType uint8, hashFunc crypto.Hash, err error) {
-       if tlsVersion < VersionTLS12 || len(peerSigAlgs) == 0 {
-               // For TLS 1.1 and before, the signature algorithm could not be
-               // negotiated and the hash is fixed based on the signature type.
-               // For TLS 1.2, if the client didn't send signature_algorithms
-               // extension then we can assume that it supports SHA1. See
-               // https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
-               switch pubkey.(type) {
-               case *rsa.PublicKey:
-                       if tlsVersion < VersionTLS12 {
-                               return 0, signaturePKCS1v15, crypto.MD5SHA1, nil
-                       } else {
-                               return PKCS1WithSHA1, signaturePKCS1v15, crypto.SHA1, nil
-                       }
-               case *ecdsa.PublicKey:
-                       return ECDSAWithSHA1, signatureECDSA, crypto.SHA1, nil
-               default:
-                       return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
-               }
-       }
-       for _, sigAlg := range peerSigAlgs {
-               if !isSupportedSignatureAlgorithm(sigAlg, ourSigAlgs) {
-                       continue
-               }
-               hashAlg, err := lookupTLSHash(sigAlg)
-               if err != nil {
-                       panic("tls: supported signature algorithm has an unknown hash function")
-               }
-               sigType := signatureFromSignatureScheme(sigAlg)
-               switch pubkey.(type) {
-               case *rsa.PublicKey:
-                       if sigType == signaturePKCS1v15 || sigType == signatureRSAPSS {
-                               return sigAlg, sigType, hashAlg, nil
-                       }
-               case *ecdsa.PublicKey:
-                       if sigType == signatureECDSA {
-                               return sigAlg, sigType, hashAlg, nil
-                       }
-               default:
-                       return 0, 0, 0, fmt.Errorf("tls: unsupported public key: %T", pubkey)
-               }
-       }
-       return 0, 0, 0, errors.New("tls: peer doesn't support any common signature algorithms")
-}
+       "crypto/go.cypherpunks.ru/gogost/v5/gost3410"
+)
 
-// verifyHandshakeSignature verifies a signature against pre-hashed handshake
-// contents.
-func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, digest, sig []byte) error {
+// verifyHandshakeSignature verifies a signature against pre-hashed
+// (if required) handshake contents.
+func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, signed, sig []byte) error {
        switch sigType {
        case signatureECDSA:
                pubKey, ok := pubkey.(*ecdsa.PublicKey)
                if !ok {
-                       return errors.New("tls: ECDSA signing requires a ECDSA public key")
+                       return fmt.Errorf("expected an ECDSA public key, got %T", pubkey)
                }
-               ecdsaSig := new(ecdsaSignature)
-               if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
-                       return err
+               if !ecdsa.VerifyASN1(pubKey, signed, sig) {
+                       return errors.New("ECDSA verification failure")
                }
-               if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
-                       return errors.New("tls: ECDSA signature contained zero or negative values")
+       case signatureEd25519:
+               pubKey, ok := pubkey.(ed25519.PublicKey)
+               if !ok {
+                       return fmt.Errorf("expected an Ed25519 public key, got %T", pubkey)
                }
-               if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
-                       return errors.New("tls: ECDSA verification failure")
+               if !ed25519.Verify(pubKey, signed, sig) {
+                       return errors.New("Ed25519 verification failure")
                }
        case signaturePKCS1v15:
                pubKey, ok := pubkey.(*rsa.PublicKey)
                if !ok {
-                       return errors.New("tls: RSA signing requires a RSA public key")
+                       return fmt.Errorf("expected an RSA public key, got %T", pubkey)
                }
-               if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
+               if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, signed, sig); err != nil {
                        return err
                }
        case signatureRSAPSS:
                pubKey, ok := pubkey.(*rsa.PublicKey)
                if !ok {
-                       return errors.New("tls: RSA signing requires a RSA public key")
+                       return fmt.Errorf("expected an RSA public key, got %T", pubkey)
                }
                signOpts := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
-               if err := rsa.VerifyPSS(pubKey, hashFunc, digest, sig, signOpts); err != nil {
+               if err := rsa.VerifyPSS(pubKey, hashFunc, signed, sig, signOpts); err != nil {
                        return err
                }
+       case signatureGOST:
+               pubKey, ok := pubkey.(*gost3410.PublicKey)
+               if !ok {
+                       return fmt.Errorf("expected GOST public key, got %T", pubkey)
+               }
+               ok, err := gost3410.PublicKeyReverseDigestAndSignature{Pub: pubKey}.VerifyDigest(signed, sig)
+               if err != nil {
+                       return err
+               }
+               if !ok {
+                       return errors.New("tls: GOST verification failure")
+               }
        default:
-               return errors.New("tls: unknown signature algorithm")
+               return errors.New("internal error: unknown signature type")
        }
        return nil
 }
+
+const (
+       serverSignatureContext = "TLS 1.3, server CertificateVerify\x00"
+       clientSignatureContext = "TLS 1.3, client CertificateVerify\x00"
+)
+
+var signaturePadding = []byte{
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+}
+
+// signedMessage returns the pre-hashed (if necessary) message to be signed by
+// certificate keys in TLS 1.3. See RFC 8446, Section 4.4.3.
+func signedMessage(sigHash crypto.Hash, context string, transcript hash.Hash) []byte {
+       if sigHash == directSigning {
+               b := &bytes.Buffer{}
+               b.Write(signaturePadding)
+               io.WriteString(b, context)
+               b.Write(transcript.Sum(nil))
+               return b.Bytes()
+       }
+       h := sigHash.New()
+       h.Write(signaturePadding)
+       io.WriteString(h, context)
+       h.Write(transcript.Sum(nil))
+       return h.Sum(nil)
+}
+
+// typeAndHashFromSignatureScheme returns the corresponding signature type and
+// crypto.Hash for a given TLS SignatureScheme.
+func typeAndHashFromSignatureScheme(signatureAlgorithm SignatureScheme) (sigType uint8, hash crypto.Hash, err error) {
+       switch signatureAlgorithm {
+       case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
+               sigType = signaturePKCS1v15
+       case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
+               sigType = signatureRSAPSS
+       case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
+               sigType = signatureECDSA
+       case Ed25519:
+               sigType = signatureEd25519
+       case GOSTR34102012256A, GOSTR34102012256B, GOSTR34102012256C, GOSTR34102012256D, GOSTR34102012512A, GOSTR34102012512B, GOSTR34102012512C:
+               sigType = signatureGOST
+       default:
+               return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm)
+       }
+       switch signatureAlgorithm {
+       case PKCS1WithSHA1, ECDSAWithSHA1:
+               hash = crypto.SHA1
+       case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256:
+               hash = crypto.SHA256
+       case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384:
+               hash = crypto.SHA384
+       case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512:
+               hash = crypto.SHA512
+       case Ed25519:
+               hash = directSigning
+       case GOSTR34102012256A, GOSTR34102012256B, GOSTR34102012256C, GOSTR34102012256D:
+               hash = crypto.GOSTR34112012256
+       case GOSTR34102012512A, GOSTR34102012512B, GOSTR34102012512C:
+               hash = crypto.GOSTR34112012512
+       default:
+               return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm)
+       }
+       return sigType, hash, nil
+}
+
+// legacyTypeAndHashFromPublicKey returns the fixed signature type and crypto.Hash for
+// a given public key used with TLS 1.0 and 1.1, before the introduction of
+// signature algorithm negotiation.
+func legacyTypeAndHashFromPublicKey(pub crypto.PublicKey) (sigType uint8, hash crypto.Hash, err error) {
+       switch pub.(type) {
+       case *rsa.PublicKey:
+               return signaturePKCS1v15, crypto.MD5SHA1, nil
+       case *ecdsa.PublicKey:
+               return signatureECDSA, crypto.SHA1, nil
+       case ed25519.PublicKey:
+               // RFC 8422 specifies support for Ed25519 in TLS 1.0 and 1.1,
+               // but it requires holding on to a handshake transcript to do a
+               // full signature, and not even OpenSSL bothers with the
+               // complexity, so we can't even test it properly.
+               return 0, 0, fmt.Errorf("tls: Ed25519 public keys are not supported before TLS 1.2")
+       default:
+               return 0, 0, fmt.Errorf("tls: unsupported public key: %T", pub)
+       }
+}
+
+var rsaSignatureSchemes = []struct {
+       scheme          SignatureScheme
+       minModulusBytes int
+       maxVersion      uint16
+}{
+       // RSA-PSS is used with PSSSaltLengthEqualsHash, and requires
+       //    emLen >= hLen + sLen + 2
+       {PSSWithSHA256, crypto.SHA256.Size()*2 + 2, VersionTLS13},
+       {PSSWithSHA384, crypto.SHA384.Size()*2 + 2, VersionTLS13},
+       {PSSWithSHA512, crypto.SHA512.Size()*2 + 2, VersionTLS13},
+       // PKCS #1 v1.5 uses prefixes from hashPrefixes in crypto/rsa, and requires
+       //    emLen >= len(prefix) + hLen + 11
+       // TLS 1.3 dropped support for PKCS #1 v1.5 in favor of RSA-PSS.
+       {PKCS1WithSHA256, 19 + crypto.SHA256.Size() + 11, VersionTLS12},
+       {PKCS1WithSHA384, 19 + crypto.SHA384.Size() + 11, VersionTLS12},
+       {PKCS1WithSHA512, 19 + crypto.SHA512.Size() + 11, VersionTLS12},
+       {PKCS1WithSHA1, 15 + crypto.SHA1.Size() + 11, VersionTLS12},
+}
+
+// signatureSchemesForCertificate returns the list of supported SignatureSchemes
+// for a given certificate, based on the public key and the protocol version,
+// and optionally filtered by its explicit SupportedSignatureAlgorithms.
+//
+// This function must be kept in sync with supportedSignatureAlgorithms.
+// FIPS filtering is applied in the caller, selectSignatureScheme.
+func signatureSchemesForCertificate(version uint16, cert *Certificate) []SignatureScheme {
+       priv, ok := cert.PrivateKey.(crypto.Signer)
+       if !ok {
+               return nil
+       }
+
+       var sigAlgs []SignatureScheme
+       switch pub := priv.Public().(type) {
+       case *ecdsa.PublicKey:
+               if version != VersionTLS13 {
+                       // In TLS 1.2 and earlier, ECDSA algorithms are not
+                       // constrained to a single curve.
+                       sigAlgs = []SignatureScheme{
+                               ECDSAWithP256AndSHA256,
+                               ECDSAWithP384AndSHA384,
+                               ECDSAWithP521AndSHA512,
+                               ECDSAWithSHA1,
+                       }
+                       break
+               }
+               switch pub.Curve {
+               case elliptic.P256():
+                       sigAlgs = []SignatureScheme{ECDSAWithP256AndSHA256}
+               case elliptic.P384():
+                       sigAlgs = []SignatureScheme{ECDSAWithP384AndSHA384}
+               case elliptic.P521():
+                       sigAlgs = []SignatureScheme{ECDSAWithP521AndSHA512}
+               default:
+                       return nil
+               }
+       case *rsa.PublicKey:
+               size := pub.Size()
+               sigAlgs = make([]SignatureScheme, 0, len(rsaSignatureSchemes))
+               for _, candidate := range rsaSignatureSchemes {
+                       if size >= candidate.minModulusBytes && version <= candidate.maxVersion {
+                               sigAlgs = append(sigAlgs, candidate.scheme)
+                       }
+               }
+       case ed25519.PublicKey:
+               sigAlgs = []SignatureScheme{Ed25519}
+       case *gost3410.PublicKey:
+               switch pub.C.Name {
+               case "id-tc26-gost-3410-12-256-paramSetA":
+                       return []SignatureScheme{GOSTR34102012256A}
+               case "id-tc26-gost-3410-12-256-paramSetB":
+                       return []SignatureScheme{GOSTR34102012256B}
+               case "id-tc26-gost-3410-12-256-paramSetC":
+                       return []SignatureScheme{GOSTR34102012256C}
+               case "id-tc26-gost-3410-12-256-paramSetD":
+                       return []SignatureScheme{GOSTR34102012256D}
+               case "id-tc26-gost-3410-12-512-paramSetA":
+                       return []SignatureScheme{GOSTR34102012512A}
+               case "id-tc26-gost-3410-12-512-paramSetB":
+                       return []SignatureScheme{GOSTR34102012512B}
+               case "id-tc26-gost-3410-12-512-paramSetC":
+                       return []SignatureScheme{GOSTR34102012512C}
+               default:
+                       return nil
+               }
+       default:
+               return nil
+       }
+
+       if cert.SupportedSignatureAlgorithms != nil {
+               var filteredSigAlgs []SignatureScheme
+               for _, sigAlg := range sigAlgs {
+                       if isSupportedSignatureAlgorithm(sigAlg, cert.SupportedSignatureAlgorithms) {
+                               filteredSigAlgs = append(filteredSigAlgs, sigAlg)
+                       }
+               }
+               return filteredSigAlgs
+       }
+       return sigAlgs
+}
+
+// selectSignatureScheme picks a SignatureScheme from the peer's preference list
+// that works with the selected certificate. It's only called for protocol
+// versions that support signature algorithms, so TLS 1.2 and 1.3.
+func selectSignatureScheme(vers uint16, c *Certificate, peerAlgs []SignatureScheme) (SignatureScheme, error) {
+       supportedAlgs := signatureSchemesForCertificate(vers, c)
+       if len(supportedAlgs) == 0 {
+               return 0, unsupportedCertificateError(c)
+       }
+       if len(peerAlgs) == 0 && vers == VersionTLS12 {
+               // For TLS 1.2, if the client didn't send signature_algorithms then we
+               // can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1.
+               peerAlgs = []SignatureScheme{PKCS1WithSHA1, ECDSAWithSHA1}
+       }
+       // Pick signature scheme in the peer's preference order, as our
+       // preference order is not configurable.
+       for _, preferredAlg := range peerAlgs {
+               if needFIPS() && !isSupportedSignatureAlgorithm(preferredAlg, fipsSupportedSignatureAlgorithms) {
+                       continue
+               }
+               if isSupportedSignatureAlgorithm(preferredAlg, supportedAlgs) {
+                       return preferredAlg, nil
+               }
+       }
+       return 0, errors.New("tls: peer doesn't support any of the certificate's signature algorithms")
+}
+
+// unsupportedCertificateError returns a helpful error for certificates with
+// an unsupported private key.
+func unsupportedCertificateError(cert *Certificate) error {
+       switch cert.PrivateKey.(type) {
+       case rsa.PrivateKey, ecdsa.PrivateKey:
+               return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T",
+                       cert.PrivateKey, cert.PrivateKey)
+       case *ed25519.PrivateKey:
+               return fmt.Errorf("tls: unsupported certificate: private key is *ed25519.PrivateKey, expected ed25519.PrivateKey")
+       }
+
+       signer, ok := cert.PrivateKey.(crypto.Signer)
+       if !ok {
+               return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer",
+                       cert.PrivateKey)
+       }
+
+       switch pub := signer.Public().(type) {
+       case *ecdsa.PublicKey:
+               switch pub.Curve {
+               case elliptic.P256():
+               case elliptic.P384():
+               case elliptic.P521():
+               default:
+                       return fmt.Errorf("tls: unsupported certificate curve (%s)", pub.Curve.Params().Name)
+               }
+       case *rsa.PublicKey:
+               return fmt.Errorf("tls: certificate RSA key size too small for supported signature algorithms")
+       case ed25519.PublicKey:
+       case *gost3410.PublicKey:
+       default:
+               return fmt.Errorf("tls: unsupported certificate key (%T)", pub)
+       }
+
+       if cert.SupportedSignatureAlgorithms != nil {
+               return fmt.Errorf("tls: peer doesn't support the certificate custom signature algorithms")
+       }
+
+       return fmt.Errorf("tls: internal error: unsupported key (%T)", cert.PrivateKey)
+}