]> Cypherpunks.ru repositories - gostls13.git/blob - src/unsafe/unsafe.go
cmd/compile/internal/inline: score call sites exposed by inlines
[gostls13.git] / src / unsafe / unsafe.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 /*
6 Package unsafe contains operations that step around the type safety of Go programs.
7
8 Packages that import unsafe may be non-portable and are not protected by the
9 Go 1 compatibility guidelines.
10 */
11 package unsafe
12
13 // ArbitraryType is here for the purposes of documentation only and is not actually
14 // part of the unsafe package. It represents the type of an arbitrary Go expression.
15 type ArbitraryType int
16
17 // IntegerType is here for the purposes of documentation only and is not actually
18 // part of the unsafe package. It represents any arbitrary integer type.
19 type IntegerType int
20
21 // Pointer represents a pointer to an arbitrary type. There are four special operations
22 // available for type Pointer that are not available for other types:
23 //   - A pointer value of any type can be converted to a Pointer.
24 //   - A Pointer can be converted to a pointer value of any type.
25 //   - A uintptr can be converted to a Pointer.
26 //   - A Pointer can be converted to a uintptr.
27 //
28 // Pointer therefore allows a program to defeat the type system and read and write
29 // arbitrary memory. It should be used with extreme care.
30 //
31 // The following patterns involving Pointer are valid.
32 // Code not using these patterns is likely to be invalid today
33 // or to become invalid in the future.
34 // Even the valid patterns below come with important caveats.
35 //
36 // Running "go vet" can help find uses of Pointer that do not conform to these patterns,
37 // but silence from "go vet" is not a guarantee that the code is valid.
38 //
39 // (1) Conversion of a *T1 to Pointer to *T2.
40 //
41 // Provided that T2 is no larger than T1 and that the two share an equivalent
42 // memory layout, this conversion allows reinterpreting data of one type as
43 // data of another type. An example is the implementation of
44 // math.Float64bits:
45 //
46 //      func Float64bits(f float64) uint64 {
47 //              return *(*uint64)(unsafe.Pointer(&f))
48 //      }
49 //
50 // (2) Conversion of a Pointer to a uintptr (but not back to Pointer).
51 //
52 // Converting a Pointer to a uintptr produces the memory address of the value
53 // pointed at, as an integer. The usual use for such a uintptr is to print it.
54 //
55 // Conversion of a uintptr back to Pointer is not valid in general.
56 //
57 // A uintptr is an integer, not a reference.
58 // Converting a Pointer to a uintptr creates an integer value
59 // with no pointer semantics.
60 // Even if a uintptr holds the address of some object,
61 // the garbage collector will not update that uintptr's value
62 // if the object moves, nor will that uintptr keep the object
63 // from being reclaimed.
64 //
65 // The remaining patterns enumerate the only valid conversions
66 // from uintptr to Pointer.
67 //
68 // (3) Conversion of a Pointer to a uintptr and back, with arithmetic.
69 //
70 // If p points into an allocated object, it can be advanced through the object
71 // by conversion to uintptr, addition of an offset, and conversion back to Pointer.
72 //
73 //      p = unsafe.Pointer(uintptr(p) + offset)
74 //
75 // The most common use of this pattern is to access fields in a struct
76 // or elements of an array:
77 //
78 //      // equivalent to f := unsafe.Pointer(&s.f)
79 //      f := unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f))
80 //
81 //      // equivalent to e := unsafe.Pointer(&x[i])
82 //      e := unsafe.Pointer(uintptr(unsafe.Pointer(&x[0])) + i*unsafe.Sizeof(x[0]))
83 //
84 // It is valid both to add and to subtract offsets from a pointer in this way.
85 // It is also valid to use &^ to round pointers, usually for alignment.
86 // In all cases, the result must continue to point into the original allocated object.
87 //
88 // Unlike in C, it is not valid to advance a pointer just beyond the end of
89 // its original allocation:
90 //
91 //      // INVALID: end points outside allocated space.
92 //      var s thing
93 //      end = unsafe.Pointer(uintptr(unsafe.Pointer(&s)) + unsafe.Sizeof(s))
94 //
95 //      // INVALID: end points outside allocated space.
96 //      b := make([]byte, n)
97 //      end = unsafe.Pointer(uintptr(unsafe.Pointer(&b[0])) + uintptr(n))
98 //
99 // Note that both conversions must appear in the same expression, with only
100 // the intervening arithmetic between them:
101 //
102 //      // INVALID: uintptr cannot be stored in variable
103 //      // before conversion back to Pointer.
104 //      u := uintptr(p)
105 //      p = unsafe.Pointer(u + offset)
106 //
107 // Note that the pointer must point into an allocated object, so it may not be nil.
108 //
109 //      // INVALID: conversion of nil pointer
110 //      u := unsafe.Pointer(nil)
111 //      p := unsafe.Pointer(uintptr(u) + offset)
112 //
113 // (4) Conversion of a Pointer to a uintptr when calling syscall.Syscall.
114 //
115 // The Syscall functions in package syscall pass their uintptr arguments directly
116 // to the operating system, which then may, depending on the details of the call,
117 // reinterpret some of them as pointers.
118 // That is, the system call implementation is implicitly converting certain arguments
119 // back from uintptr to pointer.
120 //
121 // If a pointer argument must be converted to uintptr for use as an argument,
122 // that conversion must appear in the call expression itself:
123 //
124 //      syscall.Syscall(SYS_READ, uintptr(fd), uintptr(unsafe.Pointer(p)), uintptr(n))
125 //
126 // The compiler handles a Pointer converted to a uintptr in the argument list of
127 // a call to a function implemented in assembly by arranging that the referenced
128 // allocated object, if any, is retained and not moved until the call completes,
129 // even though from the types alone it would appear that the object is no longer
130 // needed during the call.
131 //
132 // For the compiler to recognize this pattern,
133 // the conversion must appear in the argument list:
134 //
135 //      // INVALID: uintptr cannot be stored in variable
136 //      // before implicit conversion back to Pointer during system call.
137 //      u := uintptr(unsafe.Pointer(p))
138 //      syscall.Syscall(SYS_READ, uintptr(fd), u, uintptr(n))
139 //
140 // (5) Conversion of the result of reflect.Value.Pointer or reflect.Value.UnsafeAddr
141 // from uintptr to Pointer.
142 //
143 // Package reflect's Value methods named Pointer and UnsafeAddr return type uintptr
144 // instead of unsafe.Pointer to keep callers from changing the result to an arbitrary
145 // type without first importing "unsafe". However, this means that the result is
146 // fragile and must be converted to Pointer immediately after making the call,
147 // in the same expression:
148 //
149 //      p := (*int)(unsafe.Pointer(reflect.ValueOf(new(int)).Pointer()))
150 //
151 // As in the cases above, it is invalid to store the result before the conversion:
152 //
153 //      // INVALID: uintptr cannot be stored in variable
154 //      // before conversion back to Pointer.
155 //      u := reflect.ValueOf(new(int)).Pointer()
156 //      p := (*int)(unsafe.Pointer(u))
157 //
158 // (6) Conversion of a reflect.SliceHeader or reflect.StringHeader Data field to or from Pointer.
159 //
160 // As in the previous case, the reflect data structures SliceHeader and StringHeader
161 // declare the field Data as a uintptr to keep callers from changing the result to
162 // an arbitrary type without first importing "unsafe". However, this means that
163 // SliceHeader and StringHeader are only valid when interpreting the content
164 // of an actual slice or string value.
165 //
166 //      var s string
167 //      hdr := (*reflect.StringHeader)(unsafe.Pointer(&s)) // case 1
168 //      hdr.Data = uintptr(unsafe.Pointer(p))              // case 6 (this case)
169 //      hdr.Len = n
170 //
171 // In this usage hdr.Data is really an alternate way to refer to the underlying
172 // pointer in the string header, not a uintptr variable itself.
173 //
174 // In general, reflect.SliceHeader and reflect.StringHeader should be used
175 // only as *reflect.SliceHeader and *reflect.StringHeader pointing at actual
176 // slices or strings, never as plain structs.
177 // A program should not declare or allocate variables of these struct types.
178 //
179 //      // INVALID: a directly-declared header will not hold Data as a reference.
180 //      var hdr reflect.StringHeader
181 //      hdr.Data = uintptr(unsafe.Pointer(p))
182 //      hdr.Len = n
183 //      s := *(*string)(unsafe.Pointer(&hdr)) // p possibly already lost
184 type Pointer *ArbitraryType
185
186 // Sizeof takes an expression x of any type and returns the size in bytes
187 // of a hypothetical variable v as if v was declared via var v = x.
188 // The size does not include any memory possibly referenced by x.
189 // For instance, if x is a slice, Sizeof returns the size of the slice
190 // descriptor, not the size of the memory referenced by the slice.
191 // For a struct, the size includes any padding introduced by field alignment.
192 // The return value of Sizeof is a Go constant if the type of the argument x
193 // does not have variable size.
194 // (A type has variable size if it is a type parameter or if it is an array
195 // or struct type with elements of variable size).
196 func Sizeof(x ArbitraryType) uintptr
197
198 // Offsetof returns the offset within the struct of the field represented by x,
199 // which must be of the form structValue.field. In other words, it returns the
200 // number of bytes between the start of the struct and the start of the field.
201 // The return value of Offsetof is a Go constant if the type of the argument x
202 // does not have variable size.
203 // (See the description of [Sizeof] for a definition of variable sized types.)
204 func Offsetof(x ArbitraryType) uintptr
205
206 // Alignof takes an expression x of any type and returns the required alignment
207 // of a hypothetical variable v as if v was declared via var v = x.
208 // It is the largest value m such that the address of v is always zero mod m.
209 // It is the same as the value returned by reflect.TypeOf(x).Align().
210 // As a special case, if a variable s is of struct type and f is a field
211 // within that struct, then Alignof(s.f) will return the required alignment
212 // of a field of that type within a struct. This case is the same as the
213 // value returned by reflect.TypeOf(s.f).FieldAlign().
214 // The return value of Alignof is a Go constant if the type of the argument
215 // does not have variable size.
216 // (See the description of [Sizeof] for a definition of variable sized types.)
217 func Alignof(x ArbitraryType) uintptr
218
219 // The function Add adds len to ptr and returns the updated pointer
220 // Pointer(uintptr(ptr) + uintptr(len)).
221 // The len argument must be of integer type or an untyped constant.
222 // A constant len argument must be representable by a value of type int;
223 // if it is an untyped constant it is given type int.
224 // The rules for valid uses of Pointer still apply.
225 func Add(ptr Pointer, len IntegerType) Pointer
226
227 // The function Slice returns a slice whose underlying array starts at ptr
228 // and whose length and capacity are len.
229 // Slice(ptr, len) is equivalent to
230 //
231 //      (*[len]ArbitraryType)(unsafe.Pointer(ptr))[:]
232 //
233 // except that, as a special case, if ptr is nil and len is zero,
234 // Slice returns nil.
235 //
236 // The len argument must be of integer type or an untyped constant.
237 // A constant len argument must be non-negative and representable by a value of type int;
238 // if it is an untyped constant it is given type int.
239 // At run time, if len is negative, or if ptr is nil and len is not zero,
240 // a run-time panic occurs.
241 func Slice(ptr *ArbitraryType, len IntegerType) []ArbitraryType
242
243 // SliceData returns a pointer to the underlying array of the argument
244 // slice.
245 //   - If cap(slice) > 0, SliceData returns &slice[:1][0].
246 //   - If slice == nil, SliceData returns nil.
247 //   - Otherwise, SliceData returns a non-nil pointer to an
248 //     unspecified memory address.
249 func SliceData(slice []ArbitraryType) *ArbitraryType
250
251 // String returns a string value whose underlying bytes
252 // start at ptr and whose length is len.
253 //
254 // The len argument must be of integer type or an untyped constant.
255 // A constant len argument must be non-negative and representable by a value of type int;
256 // if it is an untyped constant it is given type int.
257 // At run time, if len is negative, or if ptr is nil and len is not zero,
258 // a run-time panic occurs.
259 //
260 // Since Go strings are immutable, the bytes passed to String
261 // must not be modified afterwards.
262 func String(ptr *byte, len IntegerType) string
263
264 // StringData returns a pointer to the underlying bytes of str.
265 // For an empty string the return value is unspecified, and may be nil.
266 //
267 // Since Go strings are immutable, the bytes returned by StringData
268 // must not be modified.
269 func StringData(str string) *byte