]> Cypherpunks.ru repositories - gostls13.git/blob - src/cmd/link/internal/loadpe/ldpe.go
all: fix misuses of "a" vs "an"
[gostls13.git] / src / cmd / link / internal / loadpe / ldpe.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Package loadpe implements a PE/COFF file reader.
6 package loadpe
7
8 import (
9         "bytes"
10         "cmd/internal/bio"
11         "cmd/internal/objabi"
12         "cmd/internal/sys"
13         "cmd/link/internal/loader"
14         "cmd/link/internal/sym"
15         "debug/pe"
16         "encoding/binary"
17         "errors"
18         "fmt"
19         "io"
20         "strings"
21 )
22
23 const (
24         IMAGE_SYM_UNDEFINED              = 0
25         IMAGE_SYM_ABSOLUTE               = -1
26         IMAGE_SYM_DEBUG                  = -2
27         IMAGE_SYM_TYPE_NULL              = 0
28         IMAGE_SYM_TYPE_VOID              = 1
29         IMAGE_SYM_TYPE_CHAR              = 2
30         IMAGE_SYM_TYPE_SHORT             = 3
31         IMAGE_SYM_TYPE_INT               = 4
32         IMAGE_SYM_TYPE_LONG              = 5
33         IMAGE_SYM_TYPE_FLOAT             = 6
34         IMAGE_SYM_TYPE_DOUBLE            = 7
35         IMAGE_SYM_TYPE_STRUCT            = 8
36         IMAGE_SYM_TYPE_UNION             = 9
37         IMAGE_SYM_TYPE_ENUM              = 10
38         IMAGE_SYM_TYPE_MOE               = 11
39         IMAGE_SYM_TYPE_BYTE              = 12
40         IMAGE_SYM_TYPE_WORD              = 13
41         IMAGE_SYM_TYPE_UINT              = 14
42         IMAGE_SYM_TYPE_DWORD             = 15
43         IMAGE_SYM_TYPE_PCODE             = 32768
44         IMAGE_SYM_DTYPE_NULL             = 0
45         IMAGE_SYM_DTYPE_POINTER          = 1
46         IMAGE_SYM_DTYPE_FUNCTION         = 2
47         IMAGE_SYM_DTYPE_ARRAY            = 3
48         IMAGE_SYM_CLASS_END_OF_FUNCTION  = -1
49         IMAGE_SYM_CLASS_NULL             = 0
50         IMAGE_SYM_CLASS_AUTOMATIC        = 1
51         IMAGE_SYM_CLASS_EXTERNAL         = 2
52         IMAGE_SYM_CLASS_STATIC           = 3
53         IMAGE_SYM_CLASS_REGISTER         = 4
54         IMAGE_SYM_CLASS_EXTERNAL_DEF     = 5
55         IMAGE_SYM_CLASS_LABEL            = 6
56         IMAGE_SYM_CLASS_UNDEFINED_LABEL  = 7
57         IMAGE_SYM_CLASS_MEMBER_OF_STRUCT = 8
58         IMAGE_SYM_CLASS_ARGUMENT         = 9
59         IMAGE_SYM_CLASS_STRUCT_TAG       = 10
60         IMAGE_SYM_CLASS_MEMBER_OF_UNION  = 11
61         IMAGE_SYM_CLASS_UNION_TAG        = 12
62         IMAGE_SYM_CLASS_TYPE_DEFINITION  = 13
63         IMAGE_SYM_CLASS_UNDEFINED_STATIC = 14
64         IMAGE_SYM_CLASS_ENUM_TAG         = 15
65         IMAGE_SYM_CLASS_MEMBER_OF_ENUM   = 16
66         IMAGE_SYM_CLASS_REGISTER_PARAM   = 17
67         IMAGE_SYM_CLASS_BIT_FIELD        = 18
68         IMAGE_SYM_CLASS_FAR_EXTERNAL     = 68 /* Not in PECOFF v8 spec */
69         IMAGE_SYM_CLASS_BLOCK            = 100
70         IMAGE_SYM_CLASS_FUNCTION         = 101
71         IMAGE_SYM_CLASS_END_OF_STRUCT    = 102
72         IMAGE_SYM_CLASS_FILE             = 103
73         IMAGE_SYM_CLASS_SECTION          = 104
74         IMAGE_SYM_CLASS_WEAK_EXTERNAL    = 105
75         IMAGE_SYM_CLASS_CLR_TOKEN        = 107
76         IMAGE_REL_I386_ABSOLUTE          = 0x0000
77         IMAGE_REL_I386_DIR16             = 0x0001
78         IMAGE_REL_I386_REL16             = 0x0002
79         IMAGE_REL_I386_DIR32             = 0x0006
80         IMAGE_REL_I386_DIR32NB           = 0x0007
81         IMAGE_REL_I386_SEG12             = 0x0009
82         IMAGE_REL_I386_SECTION           = 0x000A
83         IMAGE_REL_I386_SECREL            = 0x000B
84         IMAGE_REL_I386_TOKEN             = 0x000C
85         IMAGE_REL_I386_SECREL7           = 0x000D
86         IMAGE_REL_I386_REL32             = 0x0014
87         IMAGE_REL_AMD64_ABSOLUTE         = 0x0000
88         IMAGE_REL_AMD64_ADDR64           = 0x0001
89         IMAGE_REL_AMD64_ADDR32           = 0x0002
90         IMAGE_REL_AMD64_ADDR32NB         = 0x0003
91         IMAGE_REL_AMD64_REL32            = 0x0004
92         IMAGE_REL_AMD64_REL32_1          = 0x0005
93         IMAGE_REL_AMD64_REL32_2          = 0x0006
94         IMAGE_REL_AMD64_REL32_3          = 0x0007
95         IMAGE_REL_AMD64_REL32_4          = 0x0008
96         IMAGE_REL_AMD64_REL32_5          = 0x0009
97         IMAGE_REL_AMD64_SECTION          = 0x000A
98         IMAGE_REL_AMD64_SECREL           = 0x000B
99         IMAGE_REL_AMD64_SECREL7          = 0x000C
100         IMAGE_REL_AMD64_TOKEN            = 0x000D
101         IMAGE_REL_AMD64_SREL32           = 0x000E
102         IMAGE_REL_AMD64_PAIR             = 0x000F
103         IMAGE_REL_AMD64_SSPAN32          = 0x0010
104         IMAGE_REL_ARM_ABSOLUTE           = 0x0000
105         IMAGE_REL_ARM_ADDR32             = 0x0001
106         IMAGE_REL_ARM_ADDR32NB           = 0x0002
107         IMAGE_REL_ARM_BRANCH24           = 0x0003
108         IMAGE_REL_ARM_BRANCH11           = 0x0004
109         IMAGE_REL_ARM_SECTION            = 0x000E
110         IMAGE_REL_ARM_SECREL             = 0x000F
111         IMAGE_REL_ARM_MOV32              = 0x0010
112         IMAGE_REL_THUMB_MOV32            = 0x0011
113         IMAGE_REL_THUMB_BRANCH20         = 0x0012
114         IMAGE_REL_THUMB_BRANCH24         = 0x0014
115         IMAGE_REL_THUMB_BLX23            = 0x0015
116         IMAGE_REL_ARM_PAIR               = 0x0016
117         IMAGE_REL_ARM64_ABSOLUTE         = 0x0000
118         IMAGE_REL_ARM64_ADDR32           = 0x0001
119         IMAGE_REL_ARM64_ADDR32NB         = 0x0002
120         IMAGE_REL_ARM64_BRANCH26         = 0x0003
121         IMAGE_REL_ARM64_PAGEBASE_REL21   = 0x0004
122         IMAGE_REL_ARM64_REL21            = 0x0005
123         IMAGE_REL_ARM64_PAGEOFFSET_12A   = 0x0006
124         IMAGE_REL_ARM64_PAGEOFFSET_12L   = 0x0007
125         IMAGE_REL_ARM64_SECREL           = 0x0008
126         IMAGE_REL_ARM64_SECREL_LOW12A    = 0x0009
127         IMAGE_REL_ARM64_SECREL_HIGH12A   = 0x000A
128         IMAGE_REL_ARM64_SECREL_LOW12L    = 0x000B
129         IMAGE_REL_ARM64_TOKEN            = 0x000C
130         IMAGE_REL_ARM64_SECTION          = 0x000D
131         IMAGE_REL_ARM64_ADDR64           = 0x000E
132         IMAGE_REL_ARM64_BRANCH19         = 0x000F
133         IMAGE_REL_ARM64_BRANCH14         = 0x0010
134         IMAGE_REL_ARM64_REL32            = 0x0011
135 )
136
137 const (
138         // When stored into the PLT value for a symbol, this token tells
139         // windynrelocsym to redirect direct references to this symbol to a stub
140         // that loads from the corresponding import symbol and then does
141         // a jump to the loaded value.
142         CreateImportStubPltToken = -2
143
144         // When stored into the GOT value for an import symbol __imp_X this
145         // token tells windynrelocsym to redirect references to the
146         // underlying DYNIMPORT symbol X.
147         RedirectToDynImportGotToken = -2
148 )
149
150 // TODO(brainman): maybe just add ReadAt method to bio.Reader instead of creating peBiobuf
151
152 // peBiobuf makes bio.Reader look like io.ReaderAt.
153 type peBiobuf bio.Reader
154
155 func (f *peBiobuf) ReadAt(p []byte, off int64) (int, error) {
156         ret := ((*bio.Reader)(f)).MustSeek(off, 0)
157         if ret < 0 {
158                 return 0, errors.New("fail to seek")
159         }
160         n, err := f.Read(p)
161         if err != nil {
162                 return 0, err
163         }
164         return n, nil
165 }
166
167 // makeUpdater creates a loader.SymbolBuilder if one hasn't been created previously.
168 // We use this to lazily make SymbolBuilders as we don't always need a builder, and creating them for all symbols might be an error.
169 func makeUpdater(l *loader.Loader, bld *loader.SymbolBuilder, s loader.Sym) *loader.SymbolBuilder {
170         if bld != nil {
171                 return bld
172         }
173         bld = l.MakeSymbolUpdater(s)
174         return bld
175 }
176
177 // peImportSymsState tracks the set of DLL import symbols we've seen
178 // while reading host objects. We create a singleton instance of this
179 // type, which will persist across multiple host objects.
180 type peImportSymsState struct {
181
182         // Text and non-text sections read in by the host object loader.
183         secSyms []loader.Sym
184
185         // SDYNIMPORT symbols encountered along the way
186         dynimports map[loader.Sym]struct{}
187
188         // Loader and arch, for use in postprocessing.
189         l    *loader.Loader
190         arch *sys.Arch
191 }
192
193 var importSymsState *peImportSymsState
194
195 func createImportSymsState(l *loader.Loader, arch *sys.Arch) {
196         if importSymsState != nil {
197                 return
198         }
199         importSymsState = &peImportSymsState{
200                 dynimports: make(map[loader.Sym]struct{}),
201                 l:          l,
202                 arch:       arch,
203         }
204 }
205
206 // peLoaderState holds various bits of useful state information needed
207 // while loading a single PE object file.
208 type peLoaderState struct {
209         l               *loader.Loader
210         arch            *sys.Arch
211         f               *pe.File
212         pn              string
213         sectsyms        map[*pe.Section]loader.Sym
214         comdats         map[uint16]int64 // key is section index, val is size
215         sectdata        map[*pe.Section][]byte
216         localSymVersion int
217 }
218
219 // comdatDefinitions records the names of symbols for which we've
220 // previously seen a definition in COMDAT. Key is symbol name, value
221 // is symbol size (or -1 if we're using the "any" strategy).
222 var comdatDefinitions = make(map[string]int64)
223
224 // Load loads the PE file pn from input.
225 // Symbols from the object file are created via the loader 'l', and
226 // and a slice of the text symbols is returned.
227 // If an .rsrc section or set of .rsrc$xx sections is found, its symbols are
228 // returned as rsrc.
229 func Load(l *loader.Loader, arch *sys.Arch, localSymVersion int, input *bio.Reader, pkg string, length int64, pn string) (textp []loader.Sym, rsrc []loader.Sym, err error) {
230         state := &peLoaderState{
231                 l:               l,
232                 arch:            arch,
233                 sectsyms:        make(map[*pe.Section]loader.Sym),
234                 sectdata:        make(map[*pe.Section][]byte),
235                 localSymVersion: localSymVersion,
236                 pn:              pn,
237         }
238         createImportSymsState(state.l, state.arch)
239
240         // Some input files are archives containing multiple of
241         // object files, and pe.NewFile seeks to the start of
242         // input file and get confused. Create section reader
243         // to stop pe.NewFile looking before current position.
244         sr := io.NewSectionReader((*peBiobuf)(input), input.Offset(), 1<<63-1)
245
246         // TODO: replace pe.NewFile with pe.Load (grep for "add Load function" in debug/pe for details)
247         f, err := pe.NewFile(sr)
248         if err != nil {
249                 return nil, nil, err
250         }
251         defer f.Close()
252         state.f = f
253
254         // TODO return error if found .cormeta
255
256         // create symbols for mapped sections
257         for _, sect := range f.Sections {
258                 if sect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
259                         continue
260                 }
261
262                 if sect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
263                         // This has been seen for .idata sections, which we
264                         // want to ignore. See issues 5106 and 5273.
265                         continue
266                 }
267
268                 name := fmt.Sprintf("%s(%s)", pkg, sect.Name)
269                 s := state.l.LookupOrCreateCgoExport(name, localSymVersion)
270                 bld := l.MakeSymbolUpdater(s)
271
272                 switch sect.Characteristics & (pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE | pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE) {
273                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ: //.rdata
274                         bld.SetType(sym.SRODATA)
275
276                 case pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.bss
277                         bld.SetType(sym.SNOPTRBSS)
278
279                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.data
280                         bld.SetType(sym.SNOPTRDATA)
281
282                 case pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE | pe.IMAGE_SCN_MEM_READ: //.text
283                         bld.SetType(sym.STEXT)
284
285                 default:
286                         return nil, nil, fmt.Errorf("unexpected flags %#06x for PE section %s", sect.Characteristics, sect.Name)
287                 }
288
289                 if bld.Type() != sym.SNOPTRBSS {
290                         data, err := sect.Data()
291                         if err != nil {
292                                 return nil, nil, err
293                         }
294                         state.sectdata[sect] = data
295                         bld.SetData(data)
296                 }
297                 bld.SetSize(int64(sect.Size))
298                 state.sectsyms[sect] = s
299                 if sect.Name == ".rsrc" || strings.HasPrefix(sect.Name, ".rsrc$") {
300                         rsrc = append(rsrc, s)
301                 }
302         }
303
304         // Make a prepass over the symbols to collect info about COMDAT symbols.
305         if err := state.preprocessSymbols(); err != nil {
306                 return nil, nil, err
307         }
308
309         // load relocations
310         for _, rsect := range f.Sections {
311                 if _, found := state.sectsyms[rsect]; !found {
312                         continue
313                 }
314                 if rsect.NumberOfRelocations == 0 {
315                         continue
316                 }
317                 if rsect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
318                         continue
319                 }
320                 if rsect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
321                         // This has been seen for .idata sections, which we
322                         // want to ignore. See issues 5106 and 5273.
323                         continue
324                 }
325
326                 splitResources := strings.HasPrefix(rsect.Name, ".rsrc$")
327                 sb := l.MakeSymbolUpdater(state.sectsyms[rsect])
328                 for j, r := range rsect.Relocs {
329                         if int(r.SymbolTableIndex) >= len(f.COFFSymbols) {
330                                 return nil, nil, fmt.Errorf("relocation number %d symbol index idx=%d cannot be large then number of symbols %d", j, r.SymbolTableIndex, len(f.COFFSymbols))
331                         }
332                         pesym := &f.COFFSymbols[r.SymbolTableIndex]
333                         _, gosym, err := state.readpesym(pesym)
334                         if err != nil {
335                                 return nil, nil, err
336                         }
337                         if gosym == 0 {
338                                 name, err := pesym.FullName(f.StringTable)
339                                 if err != nil {
340                                         name = string(pesym.Name[:])
341                                 }
342                                 return nil, nil, fmt.Errorf("reloc of invalid sym %s idx=%d type=%d", name, r.SymbolTableIndex, pesym.Type)
343                         }
344
345                         rSym := gosym
346                         rSize := uint8(4)
347                         rOff := int32(r.VirtualAddress)
348                         var rAdd int64
349                         var rType objabi.RelocType
350                         switch arch.Family {
351                         default:
352                                 return nil, nil, fmt.Errorf("%s: unsupported arch %v", pn, arch.Family)
353                         case sys.I386, sys.AMD64:
354                                 switch r.Type {
355                                 default:
356                                         return nil, nil, fmt.Errorf("%s: %v: unknown relocation type %v", pn, state.sectsyms[rsect], r.Type)
357
358                                 case IMAGE_REL_I386_REL32, IMAGE_REL_AMD64_REL32,
359                                         IMAGE_REL_AMD64_ADDR32, // R_X86_64_PC32
360                                         IMAGE_REL_AMD64_ADDR32NB:
361                                         rType = objabi.R_PCREL
362
363                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
364
365                                 case IMAGE_REL_I386_DIR32NB, IMAGE_REL_I386_DIR32:
366                                         rType = objabi.R_ADDR
367
368                                         // load addend from image
369                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
370
371                                 case IMAGE_REL_AMD64_ADDR64: // R_X86_64_64
372                                         rSize = 8
373
374                                         rType = objabi.R_ADDR
375
376                                         // load addend from image
377                                         rAdd = int64(binary.LittleEndian.Uint64(state.sectdata[rsect][rOff:]))
378                                 }
379
380                         case sys.ARM:
381                                 switch r.Type {
382                                 default:
383                                         return nil, nil, fmt.Errorf("%s: %v: unknown ARM relocation type %v", pn, state.sectsyms[rsect], r.Type)
384
385                                 case IMAGE_REL_ARM_SECREL:
386                                         rType = objabi.R_PCREL
387
388                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
389
390                                 case IMAGE_REL_ARM_ADDR32, IMAGE_REL_ARM_ADDR32NB:
391                                         rType = objabi.R_ADDR
392
393                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
394
395                                 case IMAGE_REL_ARM_BRANCH24:
396                                         rType = objabi.R_CALLARM
397
398                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
399                                 }
400
401                         case sys.ARM64:
402                                 switch r.Type {
403                                 default:
404                                         return nil, nil, fmt.Errorf("%s: %v: unknown ARM64 relocation type %v", pn, state.sectsyms[rsect], r.Type)
405
406                                 case IMAGE_REL_ARM64_ADDR32, IMAGE_REL_ARM64_ADDR32NB:
407                                         rType = objabi.R_ADDR
408
409                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
410                                 }
411                         }
412
413                         // ld -r could generate multiple section symbols for the
414                         // same section but with different values, we have to take
415                         // that into account, or in the case of split resources,
416                         // the section and its symbols are split into two sections.
417                         if issect(pesym) || splitResources {
418                                 rAdd += int64(pesym.Value)
419                         }
420
421                         rel, _ := sb.AddRel(rType)
422                         rel.SetOff(rOff)
423                         rel.SetSiz(rSize)
424                         rel.SetSym(rSym)
425                         rel.SetAdd(rAdd)
426                 }
427
428                 sb.SortRelocs()
429         }
430
431         // enter sub-symbols into symbol table.
432         for i, numaux := 0, 0; i < len(f.COFFSymbols); i += numaux + 1 {
433                 pesym := &f.COFFSymbols[i]
434
435                 numaux = int(pesym.NumberOfAuxSymbols)
436
437                 name, err := pesym.FullName(f.StringTable)
438                 if err != nil {
439                         return nil, nil, err
440                 }
441                 if name == "" {
442                         continue
443                 }
444                 if issect(pesym) {
445                         continue
446                 }
447                 if int(pesym.SectionNumber) > len(f.Sections) {
448                         continue
449                 }
450                 if pesym.SectionNumber == IMAGE_SYM_DEBUG {
451                         continue
452                 }
453                 if pesym.SectionNumber == IMAGE_SYM_ABSOLUTE && bytes.Equal(pesym.Name[:], []byte("@feat.00")) {
454                         // Microsoft's linker looks at whether all input objects have an empty
455                         // section called @feat.00. If all of them do, then it enables SEH;
456                         // otherwise it doesn't enable that feature. So, since around the Windows
457                         // XP SP2 era, most tools that make PE objects just tack on that section,
458                         // so that it won't gimp Microsoft's linker logic. Go doesn't support SEH,
459                         // so in theory, none of this really matters to us. But actually, if the
460                         // linker tries to ingest an object with @feat.00 -- which are produced by
461                         // LLVM's resource compiler, for example -- it chokes because of the
462                         // IMAGE_SYM_ABSOLUTE section that it doesn't know how to deal with. Since
463                         // @feat.00 is just a marking anyway, skip IMAGE_SYM_ABSOLUTE sections that
464                         // are called @feat.00.
465                         continue
466                 }
467                 var sect *pe.Section
468                 if pesym.SectionNumber > 0 {
469                         sect = f.Sections[pesym.SectionNumber-1]
470                         if _, found := state.sectsyms[sect]; !found {
471                                 continue
472                         }
473                 }
474
475                 bld, s, err := state.readpesym(pesym)
476                 if err != nil {
477                         return nil, nil, err
478                 }
479
480                 if pesym.SectionNumber == 0 { // extern
481                         if l.SymType(s) == sym.SXREF && pesym.Value > 0 { // global data
482                                 bld = makeUpdater(l, bld, s)
483                                 bld.SetType(sym.SNOPTRDATA)
484                                 bld.SetSize(int64(pesym.Value))
485                         }
486
487                         continue
488                 } else if pesym.SectionNumber > 0 && int(pesym.SectionNumber) <= len(f.Sections) {
489                         sect = f.Sections[pesym.SectionNumber-1]
490                         if _, found := state.sectsyms[sect]; !found {
491                                 return nil, nil, fmt.Errorf("%s: %v: missing sect.sym", pn, s)
492                         }
493                 } else {
494                         return nil, nil, fmt.Errorf("%s: %v: sectnum < 0!", pn, s)
495                 }
496
497                 if sect == nil {
498                         return nil, nil, nil
499                 }
500
501                 // Check for COMDAT symbol.
502                 if sz, ok1 := state.comdats[uint16(pesym.SectionNumber-1)]; ok1 {
503                         if psz, ok2 := comdatDefinitions[l.SymName(s)]; ok2 {
504                                 if sz == psz {
505                                         //  OK to discard, we've seen an instance
506                                         // already.
507                                         continue
508                                 }
509                         }
510                 }
511                 if l.OuterSym(s) != 0 {
512                         if l.AttrDuplicateOK(s) {
513                                 continue
514                         }
515                         outerName := l.SymName(l.OuterSym(s))
516                         sectName := l.SymName(state.sectsyms[sect])
517                         return nil, nil, fmt.Errorf("%s: duplicate symbol reference: %s in both %s and %s", pn, l.SymName(s), outerName, sectName)
518                 }
519
520                 bld = makeUpdater(l, bld, s)
521                 sectsym := state.sectsyms[sect]
522                 bld.SetType(l.SymType(sectsym))
523                 l.AddInteriorSym(sectsym, s)
524                 bld.SetValue(int64(pesym.Value))
525                 bld.SetSize(4)
526                 if l.SymType(sectsym) == sym.STEXT {
527                         if bld.External() && !bld.DuplicateOK() {
528                                 return nil, nil, fmt.Errorf("%s: duplicate symbol definition", l.SymName(s))
529                         }
530                         bld.SetExternal(true)
531                 }
532                 if sz, ok := state.comdats[uint16(pesym.SectionNumber-1)]; ok {
533                         // This is a COMDAT definition. Record that we're picking
534                         // this instance so that we can ignore future defs.
535                         if _, ok := comdatDefinitions[l.SymName(s)]; ok {
536                                 return nil, nil, fmt.Errorf("internal error: preexisting COMDAT definition for %q", name)
537                         }
538                         comdatDefinitions[l.SymName(s)] = sz
539                 }
540         }
541
542         // Sort outer lists by address, adding to textp.
543         // This keeps textp in increasing address order.
544         for _, sect := range f.Sections {
545                 s := state.sectsyms[sect]
546                 if s == 0 {
547                         continue
548                 }
549                 l.SortSub(s)
550                 importSymsState.secSyms = append(importSymsState.secSyms, s)
551                 if l.SymType(s) == sym.STEXT {
552                         for ; s != 0; s = l.SubSym(s) {
553                                 if l.AttrOnList(s) {
554                                         return nil, nil, fmt.Errorf("symbol %s listed multiple times", l.SymName(s))
555                                 }
556                                 l.SetAttrOnList(s, true)
557                                 textp = append(textp, s)
558                         }
559                 }
560         }
561
562         return textp, rsrc, nil
563 }
564
565 // PostProcessImports works to resolve inconsistencies with DLL import
566 // symbols; it is needed when building with more "modern" C compilers
567 // with internal linkage.
568 //
569 // Background: DLL import symbols are data (SNOPTRDATA) symbols whose
570 // name is of the form "__imp_XXX", which contain a pointer/reference
571 // to symbol XXX. It's possible to have import symbols for both data
572 // symbols ("__imp__fmode") and text symbols ("__imp_CreateEventA").
573 // In some case import symbols are just references to some external
574 // thing, and in other cases we see actual definitions of import
575 // symbols when reading host objects.
576 //
577 // Previous versions of the linker would in most cases immediately
578 // "forward" import symbol references, e.g. treat a references to
579 // "__imp_XXX" a references to "XXX", however this doesn't work well
580 // with more modern compilers, where you can sometimes see import
581 // symbols that are defs (as opposed to external refs).
582 //
583 // The main actions taken below are to search for references to
584 // SDYNIMPORT symbols in host object text/data sections and flag the
585 // symbols for later fixup. When we see a reference to an import
586 // symbol __imp_XYZ where XYZ corresponds to some SDYNIMPORT symbol,
587 // we flag the symbol (via GOT setting) so that it can be redirected
588 // to XYZ later in windynrelocsym. When we see a direct reference to
589 // an SDYNIMPORT symbol XYZ, we also flag the symbol (via PLT setting)
590 // to indicated that the reference will need to be redirected to a
591 // stub.
592 func PostProcessImports() error {
593         ldr := importSymsState.l
594         arch := importSymsState.arch
595         keeprelocneeded := make(map[loader.Sym]loader.Sym)
596         for _, s := range importSymsState.secSyms {
597                 isText := ldr.SymType(s) == sym.STEXT
598                 relocs := ldr.Relocs(s)
599                 for i := 0; i < relocs.Count(); i++ {
600                         r := relocs.At(i)
601                         rs := r.Sym()
602                         if ldr.SymType(rs) == sym.SDYNIMPORT {
603                                 // Tag the symbol for later stub generation.
604                                 ldr.SetPlt(rs, CreateImportStubPltToken)
605                                 continue
606                         }
607                         isym, err := LookupBaseFromImport(rs, ldr, arch)
608                         if err != nil {
609                                 return err
610                         }
611                         if isym == 0 {
612                                 continue
613                         }
614                         if ldr.SymType(isym) != sym.SDYNIMPORT {
615                                 continue
616                         }
617                         // For non-text symbols, forward the reference from __imp_X to
618                         // X immediately.
619                         if !isText {
620                                 r.SetSym(isym)
621                                 continue
622                         }
623                         // Flag this imp symbol to be processed later in windynrelocsym.
624                         ldr.SetGot(rs, RedirectToDynImportGotToken)
625                         // Consistency check: should be no PLT token here.
626                         splt := ldr.SymPlt(rs)
627                         if splt != -1 {
628                                 return fmt.Errorf("internal error: import symbol %q has invalid PLT setting %d", ldr.SymName(rs), splt)
629                         }
630                         // Flag for dummy relocation.
631                         keeprelocneeded[rs] = isym
632                 }
633         }
634         for k, v := range keeprelocneeded {
635                 sb := ldr.MakeSymbolUpdater(k)
636                 r, _ := sb.AddRel(objabi.R_KEEP)
637                 r.SetSym(v)
638         }
639         importSymsState = nil
640         return nil
641 }
642
643 func issect(s *pe.COFFSymbol) bool {
644         return s.StorageClass == IMAGE_SYM_CLASS_STATIC && s.Type == 0 && s.Name[0] == '.'
645 }
646
647 func (state *peLoaderState) readpesym(pesym *pe.COFFSymbol) (*loader.SymbolBuilder, loader.Sym, error) {
648         symname, err := pesym.FullName(state.f.StringTable)
649         if err != nil {
650                 return nil, 0, err
651         }
652         var name string
653         if issect(pesym) {
654                 name = state.l.SymName(state.sectsyms[state.f.Sections[pesym.SectionNumber-1]])
655         } else {
656                 name = symname
657                 // A note on the "_main" exclusion below: the main routine
658                 // defined by the Go runtime is named "_main", not "main", so
659                 // when reading references to _main from a host object we want
660                 // to avoid rewriting "_main" to "main" in this specific
661                 // instance. See #issuecomment-1143698749 on #35006 for more
662                 // details on this problem.
663                 if state.arch.Family == sys.I386 && name[0] == '_' && name != "_main" && !strings.HasPrefix(name, "__imp_") {
664                         name = name[1:] // _Name => Name
665                 }
666         }
667
668         // remove last @XXX
669         if i := strings.LastIndex(name, "@"); i >= 0 {
670                 name = name[:i]
671         }
672
673         var s loader.Sym
674         var bld *loader.SymbolBuilder
675         // Microsoft's PE documentation is contradictory. It says that the symbol's complex type
676         // is stored in the pesym.Type most significant byte, but MSVC, LLVM, and mingw store it
677         // in the 4 high bits of the less significant byte.
678         switch uint8(pesym.Type&0xf0) >> 4 {
679         default:
680                 return nil, 0, fmt.Errorf("%s: invalid symbol type %d", symname, pesym.Type)
681
682         case IMAGE_SYM_DTYPE_FUNCTION, IMAGE_SYM_DTYPE_NULL:
683                 switch pesym.StorageClass {
684                 case IMAGE_SYM_CLASS_EXTERNAL: //global
685                         s = state.l.LookupOrCreateCgoExport(name, 0)
686
687                 case IMAGE_SYM_CLASS_NULL, IMAGE_SYM_CLASS_STATIC, IMAGE_SYM_CLASS_LABEL:
688                         s = state.l.LookupOrCreateCgoExport(name, state.localSymVersion)
689                         bld = makeUpdater(state.l, bld, s)
690                         bld.SetDuplicateOK(true)
691
692                 default:
693                         return nil, 0, fmt.Errorf("%s: invalid symbol binding %d", symname, pesym.StorageClass)
694                 }
695         }
696
697         if s != 0 && state.l.SymType(s) == 0 && (pesym.StorageClass != IMAGE_SYM_CLASS_STATIC || pesym.Value != 0) {
698                 bld = makeUpdater(state.l, bld, s)
699                 bld.SetType(sym.SXREF)
700         }
701
702         return bld, s, nil
703 }
704
705 // preprocessSymbols walks the COFF symbols for the PE file we're
706 // reading and looks for cases where we have both a symbol definition
707 // for "XXX" and an "__imp_XXX" symbol, recording these cases in a map
708 // in the state struct. This information will be used in readpesym()
709 // above to give such symbols special treatment. This function also
710 // gathers information about COMDAT sections/symbols for later use
711 // in readpesym().
712 func (state *peLoaderState) preprocessSymbols() error {
713
714         // Locate comdat sections.
715         state.comdats = make(map[uint16]int64)
716         for i, s := range state.f.Sections {
717                 if s.Characteristics&uint32(pe.IMAGE_SCN_LNK_COMDAT) != 0 {
718                         state.comdats[uint16(i)] = int64(s.Size)
719                 }
720         }
721
722         // Examine symbol defs.
723         for i, numaux := 0, 0; i < len(state.f.COFFSymbols); i += numaux + 1 {
724                 pesym := &state.f.COFFSymbols[i]
725                 numaux = int(pesym.NumberOfAuxSymbols)
726                 if pesym.SectionNumber == 0 { // extern
727                         continue
728                 }
729                 symname, err := pesym.FullName(state.f.StringTable)
730                 if err != nil {
731                         return err
732                 }
733                 if _, isc := state.comdats[uint16(pesym.SectionNumber-1)]; !isc {
734                         continue
735                 }
736                 if pesym.StorageClass != uint8(IMAGE_SYM_CLASS_STATIC) {
737                         continue
738                 }
739                 // This symbol corresponds to a COMDAT section. Read the
740                 // aux data for it.
741                 auxsymp, err := state.f.COFFSymbolReadSectionDefAux(i)
742                 if err != nil {
743                         return fmt.Errorf("unable to read aux info for section def symbol %d %s: pe.COFFSymbolReadComdatInfo returns %v", i, symname, err)
744                 }
745                 if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_SAME_SIZE {
746                         // This is supported.
747                 } else if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_ANY {
748                         // Also supported.
749                         state.comdats[uint16(pesym.SectionNumber-1)] = int64(-1)
750                 } else {
751                         // We don't support any of the other strategies at the
752                         // moment. I suspect that we may need to also support
753                         // "associative", we'll see.
754                         return fmt.Errorf("internal error: unsupported COMDAT selection strategy found in path=%s sec=%d strategy=%d idx=%d, please file a bug", state.pn, auxsymp.SecNum, auxsymp.Selection, i)
755                 }
756         }
757         return nil
758 }
759
760 // LookupBaseFromImport examines the symbol "s" to see if it
761 // corresponds to an import symbol (name of the form "__imp_XYZ") and
762 // if so, it looks up the underlying target of the import symbol and
763 // returns it. An error is returned if the symbol is of the form
764 // "__imp_XYZ" but no XYZ can be found.
765 func LookupBaseFromImport(s loader.Sym, ldr *loader.Loader, arch *sys.Arch) (loader.Sym, error) {
766         sname := ldr.SymName(s)
767         if !strings.HasPrefix(sname, "__imp_") {
768                 return 0, nil
769         }
770         basename := sname[len("__imp_"):]
771         if arch.Family == sys.I386 && basename[0] == '_' {
772                 basename = basename[1:] // _Name => Name
773         }
774         isym := ldr.Lookup(basename, 0)
775         if isym == 0 {
776                 return 0, fmt.Errorf("internal error: import symbol %q with no underlying sym", sname)
777         }
778         return isym, nil
779 }