]> Cypherpunks.ru repositories - gostls13.git/blob - src/cmd/link/internal/loadpe/ldpe.go
cmd/compile/internal/inline: score call sites exposed by inlines
[gostls13.git] / src / cmd / link / internal / loadpe / ldpe.go
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Package loadpe implements a PE/COFF file reader.
6 package loadpe
7
8 import (
9         "bytes"
10         "cmd/internal/bio"
11         "cmd/internal/objabi"
12         "cmd/internal/sys"
13         "cmd/link/internal/loader"
14         "cmd/link/internal/sym"
15         "debug/pe"
16         "encoding/binary"
17         "errors"
18         "fmt"
19         "io"
20         "strings"
21 )
22
23 const (
24         IMAGE_SYM_UNDEFINED              = 0
25         IMAGE_SYM_ABSOLUTE               = -1
26         IMAGE_SYM_DEBUG                  = -2
27         IMAGE_SYM_TYPE_NULL              = 0
28         IMAGE_SYM_TYPE_VOID              = 1
29         IMAGE_SYM_TYPE_CHAR              = 2
30         IMAGE_SYM_TYPE_SHORT             = 3
31         IMAGE_SYM_TYPE_INT               = 4
32         IMAGE_SYM_TYPE_LONG              = 5
33         IMAGE_SYM_TYPE_FLOAT             = 6
34         IMAGE_SYM_TYPE_DOUBLE            = 7
35         IMAGE_SYM_TYPE_STRUCT            = 8
36         IMAGE_SYM_TYPE_UNION             = 9
37         IMAGE_SYM_TYPE_ENUM              = 10
38         IMAGE_SYM_TYPE_MOE               = 11
39         IMAGE_SYM_TYPE_BYTE              = 12
40         IMAGE_SYM_TYPE_WORD              = 13
41         IMAGE_SYM_TYPE_UINT              = 14
42         IMAGE_SYM_TYPE_DWORD             = 15
43         IMAGE_SYM_TYPE_PCODE             = 32768
44         IMAGE_SYM_DTYPE_NULL             = 0
45         IMAGE_SYM_DTYPE_POINTER          = 1
46         IMAGE_SYM_DTYPE_FUNCTION         = 2
47         IMAGE_SYM_DTYPE_ARRAY            = 3
48         IMAGE_SYM_CLASS_END_OF_FUNCTION  = -1
49         IMAGE_SYM_CLASS_NULL             = 0
50         IMAGE_SYM_CLASS_AUTOMATIC        = 1
51         IMAGE_SYM_CLASS_EXTERNAL         = 2
52         IMAGE_SYM_CLASS_STATIC           = 3
53         IMAGE_SYM_CLASS_REGISTER         = 4
54         IMAGE_SYM_CLASS_EXTERNAL_DEF     = 5
55         IMAGE_SYM_CLASS_LABEL            = 6
56         IMAGE_SYM_CLASS_UNDEFINED_LABEL  = 7
57         IMAGE_SYM_CLASS_MEMBER_OF_STRUCT = 8
58         IMAGE_SYM_CLASS_ARGUMENT         = 9
59         IMAGE_SYM_CLASS_STRUCT_TAG       = 10
60         IMAGE_SYM_CLASS_MEMBER_OF_UNION  = 11
61         IMAGE_SYM_CLASS_UNION_TAG        = 12
62         IMAGE_SYM_CLASS_TYPE_DEFINITION  = 13
63         IMAGE_SYM_CLASS_UNDEFINED_STATIC = 14
64         IMAGE_SYM_CLASS_ENUM_TAG         = 15
65         IMAGE_SYM_CLASS_MEMBER_OF_ENUM   = 16
66         IMAGE_SYM_CLASS_REGISTER_PARAM   = 17
67         IMAGE_SYM_CLASS_BIT_FIELD        = 18
68         IMAGE_SYM_CLASS_FAR_EXTERNAL     = 68 /* Not in PECOFF v8 spec */
69         IMAGE_SYM_CLASS_BLOCK            = 100
70         IMAGE_SYM_CLASS_FUNCTION         = 101
71         IMAGE_SYM_CLASS_END_OF_STRUCT    = 102
72         IMAGE_SYM_CLASS_FILE             = 103
73         IMAGE_SYM_CLASS_SECTION          = 104
74         IMAGE_SYM_CLASS_WEAK_EXTERNAL    = 105
75         IMAGE_SYM_CLASS_CLR_TOKEN        = 107
76         IMAGE_REL_I386_ABSOLUTE          = 0x0000
77         IMAGE_REL_I386_DIR16             = 0x0001
78         IMAGE_REL_I386_REL16             = 0x0002
79         IMAGE_REL_I386_DIR32             = 0x0006
80         IMAGE_REL_I386_DIR32NB           = 0x0007
81         IMAGE_REL_I386_SEG12             = 0x0009
82         IMAGE_REL_I386_SECTION           = 0x000A
83         IMAGE_REL_I386_SECREL            = 0x000B
84         IMAGE_REL_I386_TOKEN             = 0x000C
85         IMAGE_REL_I386_SECREL7           = 0x000D
86         IMAGE_REL_I386_REL32             = 0x0014
87         IMAGE_REL_AMD64_ABSOLUTE         = 0x0000
88         IMAGE_REL_AMD64_ADDR64           = 0x0001
89         IMAGE_REL_AMD64_ADDR32           = 0x0002
90         IMAGE_REL_AMD64_ADDR32NB         = 0x0003
91         IMAGE_REL_AMD64_REL32            = 0x0004
92         IMAGE_REL_AMD64_REL32_1          = 0x0005
93         IMAGE_REL_AMD64_REL32_2          = 0x0006
94         IMAGE_REL_AMD64_REL32_3          = 0x0007
95         IMAGE_REL_AMD64_REL32_4          = 0x0008
96         IMAGE_REL_AMD64_REL32_5          = 0x0009
97         IMAGE_REL_AMD64_SECTION          = 0x000A
98         IMAGE_REL_AMD64_SECREL           = 0x000B
99         IMAGE_REL_AMD64_SECREL7          = 0x000C
100         IMAGE_REL_AMD64_TOKEN            = 0x000D
101         IMAGE_REL_AMD64_SREL32           = 0x000E
102         IMAGE_REL_AMD64_PAIR             = 0x000F
103         IMAGE_REL_AMD64_SSPAN32          = 0x0010
104         IMAGE_REL_ARM_ABSOLUTE           = 0x0000
105         IMAGE_REL_ARM_ADDR32             = 0x0001
106         IMAGE_REL_ARM_ADDR32NB           = 0x0002
107         IMAGE_REL_ARM_BRANCH24           = 0x0003
108         IMAGE_REL_ARM_BRANCH11           = 0x0004
109         IMAGE_REL_ARM_SECTION            = 0x000E
110         IMAGE_REL_ARM_SECREL             = 0x000F
111         IMAGE_REL_ARM_MOV32              = 0x0010
112         IMAGE_REL_THUMB_MOV32            = 0x0011
113         IMAGE_REL_THUMB_BRANCH20         = 0x0012
114         IMAGE_REL_THUMB_BRANCH24         = 0x0014
115         IMAGE_REL_THUMB_BLX23            = 0x0015
116         IMAGE_REL_ARM_PAIR               = 0x0016
117         IMAGE_REL_ARM64_ABSOLUTE         = 0x0000
118         IMAGE_REL_ARM64_ADDR32           = 0x0001
119         IMAGE_REL_ARM64_ADDR32NB         = 0x0002
120         IMAGE_REL_ARM64_BRANCH26         = 0x0003
121         IMAGE_REL_ARM64_PAGEBASE_REL21   = 0x0004
122         IMAGE_REL_ARM64_REL21            = 0x0005
123         IMAGE_REL_ARM64_PAGEOFFSET_12A   = 0x0006
124         IMAGE_REL_ARM64_PAGEOFFSET_12L   = 0x0007
125         IMAGE_REL_ARM64_SECREL           = 0x0008
126         IMAGE_REL_ARM64_SECREL_LOW12A    = 0x0009
127         IMAGE_REL_ARM64_SECREL_HIGH12A   = 0x000A
128         IMAGE_REL_ARM64_SECREL_LOW12L    = 0x000B
129         IMAGE_REL_ARM64_TOKEN            = 0x000C
130         IMAGE_REL_ARM64_SECTION          = 0x000D
131         IMAGE_REL_ARM64_ADDR64           = 0x000E
132         IMAGE_REL_ARM64_BRANCH19         = 0x000F
133         IMAGE_REL_ARM64_BRANCH14         = 0x0010
134         IMAGE_REL_ARM64_REL32            = 0x0011
135 )
136
137 const (
138         // When stored into the PLT value for a symbol, this token tells
139         // windynrelocsym to redirect direct references to this symbol to a stub
140         // that loads from the corresponding import symbol and then does
141         // a jump to the loaded value.
142         CreateImportStubPltToken = -2
143
144         // When stored into the GOT value for an import symbol __imp_X this
145         // token tells windynrelocsym to redirect references to the
146         // underlying DYNIMPORT symbol X.
147         RedirectToDynImportGotToken = -2
148 )
149
150 // TODO(brainman): maybe just add ReadAt method to bio.Reader instead of creating peBiobuf
151
152 // peBiobuf makes bio.Reader look like io.ReaderAt.
153 type peBiobuf bio.Reader
154
155 func (f *peBiobuf) ReadAt(p []byte, off int64) (int, error) {
156         ret := ((*bio.Reader)(f)).MustSeek(off, 0)
157         if ret < 0 {
158                 return 0, errors.New("fail to seek")
159         }
160         n, err := f.Read(p)
161         if err != nil {
162                 return 0, err
163         }
164         return n, nil
165 }
166
167 // makeUpdater creates a loader.SymbolBuilder if one hasn't been created previously.
168 // We use this to lazily make SymbolBuilders as we don't always need a builder, and creating them for all symbols might be an error.
169 func makeUpdater(l *loader.Loader, bld *loader.SymbolBuilder, s loader.Sym) *loader.SymbolBuilder {
170         if bld != nil {
171                 return bld
172         }
173         bld = l.MakeSymbolUpdater(s)
174         return bld
175 }
176
177 // peImportSymsState tracks the set of DLL import symbols we've seen
178 // while reading host objects. We create a singleton instance of this
179 // type, which will persist across multiple host objects.
180 type peImportSymsState struct {
181
182         // Text and non-text sections read in by the host object loader.
183         secSyms []loader.Sym
184
185         // Loader and arch, for use in postprocessing.
186         l    *loader.Loader
187         arch *sys.Arch
188 }
189
190 var importSymsState *peImportSymsState
191
192 func createImportSymsState(l *loader.Loader, arch *sys.Arch) {
193         if importSymsState != nil {
194                 return
195         }
196         importSymsState = &peImportSymsState{
197                 l:    l,
198                 arch: arch,
199         }
200 }
201
202 // peLoaderState holds various bits of useful state information needed
203 // while loading a single PE object file.
204 type peLoaderState struct {
205         l               *loader.Loader
206         arch            *sys.Arch
207         f               *pe.File
208         pn              string
209         sectsyms        map[*pe.Section]loader.Sym
210         comdats         map[uint16]int64 // key is section index, val is size
211         sectdata        map[*pe.Section][]byte
212         localSymVersion int
213 }
214
215 // comdatDefinitions records the names of symbols for which we've
216 // previously seen a definition in COMDAT. Key is symbol name, value
217 // is symbol size (or -1 if we're using the "any" strategy).
218 var comdatDefinitions map[string]int64
219
220 // Symbols contains the symbols that can be loaded from a PE file.
221 type Symbols struct {
222         Textp     []loader.Sym // text symbols
223         Resources []loader.Sym // .rsrc section or set of .rsrc$xx sections
224         PData     loader.Sym
225         XData     loader.Sym
226 }
227
228 // Load loads the PE file pn from input.
229 // Symbols from the object file are created via the loader 'l'.
230 func Load(l *loader.Loader, arch *sys.Arch, localSymVersion int, input *bio.Reader, pkg string, length int64, pn string) (*Symbols, error) {
231         state := &peLoaderState{
232                 l:               l,
233                 arch:            arch,
234                 sectsyms:        make(map[*pe.Section]loader.Sym),
235                 sectdata:        make(map[*pe.Section][]byte),
236                 localSymVersion: localSymVersion,
237                 pn:              pn,
238         }
239         createImportSymsState(state.l, state.arch)
240         if comdatDefinitions == nil {
241                 comdatDefinitions = make(map[string]int64)
242         }
243
244         // Some input files are archives containing multiple of
245         // object files, and pe.NewFile seeks to the start of
246         // input file and get confused. Create section reader
247         // to stop pe.NewFile looking before current position.
248         sr := io.NewSectionReader((*peBiobuf)(input), input.Offset(), 1<<63-1)
249
250         // TODO: replace pe.NewFile with pe.Load (grep for "add Load function" in debug/pe for details)
251         f, err := pe.NewFile(sr)
252         if err != nil {
253                 return nil, err
254         }
255         defer f.Close()
256         state.f = f
257
258         var ls Symbols
259
260         // TODO return error if found .cormeta
261
262         // create symbols for mapped sections
263         for _, sect := range f.Sections {
264                 if sect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
265                         continue
266                 }
267
268                 if sect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
269                         // This has been seen for .idata sections, which we
270                         // want to ignore. See issues 5106 and 5273.
271                         continue
272                 }
273
274                 name := fmt.Sprintf("%s(%s)", pkg, sect.Name)
275                 s := state.l.LookupOrCreateCgoExport(name, localSymVersion)
276                 bld := l.MakeSymbolUpdater(s)
277
278                 switch sect.Characteristics & (pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE | pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE) {
279                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ: //.rdata
280                         if issehsect(arch, sect) {
281                                 bld.SetType(sym.SSEHSECT)
282                                 bld.SetAlign(4)
283                         } else {
284                                 bld.SetType(sym.SRODATA)
285                         }
286
287                 case pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.bss
288                         bld.SetType(sym.SNOPTRBSS)
289
290                 case pe.IMAGE_SCN_CNT_INITIALIZED_DATA | pe.IMAGE_SCN_MEM_READ | pe.IMAGE_SCN_MEM_WRITE: //.data
291                         bld.SetType(sym.SNOPTRDATA)
292
293                 case pe.IMAGE_SCN_CNT_CODE | pe.IMAGE_SCN_MEM_EXECUTE | pe.IMAGE_SCN_MEM_READ: //.text
294                         bld.SetType(sym.STEXT)
295
296                 default:
297                         return nil, fmt.Errorf("unexpected flags %#06x for PE section %s", sect.Characteristics, sect.Name)
298                 }
299
300                 if bld.Type() != sym.SNOPTRBSS {
301                         data, err := sect.Data()
302                         if err != nil {
303                                 return nil, err
304                         }
305                         state.sectdata[sect] = data
306                         bld.SetData(data)
307                 }
308                 bld.SetSize(int64(sect.Size))
309                 state.sectsyms[sect] = s
310                 if sect.Name == ".rsrc" || strings.HasPrefix(sect.Name, ".rsrc$") {
311                         ls.Resources = append(ls.Resources, s)
312                 } else if bld.Type() == sym.SSEHSECT {
313                         if sect.Name == ".pdata" {
314                                 ls.PData = s
315                         } else if sect.Name == ".xdata" {
316                                 ls.XData = s
317                         }
318                 }
319         }
320
321         // Make a prepass over the symbols to collect info about COMDAT symbols.
322         if err := state.preprocessSymbols(); err != nil {
323                 return nil, err
324         }
325
326         // load relocations
327         for _, rsect := range f.Sections {
328                 if _, found := state.sectsyms[rsect]; !found {
329                         continue
330                 }
331                 if rsect.NumberOfRelocations == 0 {
332                         continue
333                 }
334                 if rsect.Characteristics&pe.IMAGE_SCN_MEM_DISCARDABLE != 0 {
335                         continue
336                 }
337                 if rsect.Characteristics&(pe.IMAGE_SCN_CNT_CODE|pe.IMAGE_SCN_CNT_INITIALIZED_DATA|pe.IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 {
338                         // This has been seen for .idata sections, which we
339                         // want to ignore. See issues 5106 and 5273.
340                         continue
341                 }
342
343                 splitResources := strings.HasPrefix(rsect.Name, ".rsrc$")
344                 issehsect := issehsect(arch, rsect)
345                 sb := l.MakeSymbolUpdater(state.sectsyms[rsect])
346                 for j, r := range rsect.Relocs {
347                         if int(r.SymbolTableIndex) >= len(f.COFFSymbols) {
348                                 return nil, fmt.Errorf("relocation number %d symbol index idx=%d cannot be large then number of symbols %d", j, r.SymbolTableIndex, len(f.COFFSymbols))
349                         }
350                         pesym := &f.COFFSymbols[r.SymbolTableIndex]
351                         _, gosym, err := state.readpesym(pesym)
352                         if err != nil {
353                                 return nil, err
354                         }
355                         if gosym == 0 {
356                                 name, err := pesym.FullName(f.StringTable)
357                                 if err != nil {
358                                         name = string(pesym.Name[:])
359                                 }
360                                 return nil, fmt.Errorf("reloc of invalid sym %s idx=%d type=%d", name, r.SymbolTableIndex, pesym.Type)
361                         }
362
363                         rSym := gosym
364                         rSize := uint8(4)
365                         rOff := int32(r.VirtualAddress)
366                         var rAdd int64
367                         var rType objabi.RelocType
368                         switch arch.Family {
369                         default:
370                                 return nil, fmt.Errorf("%s: unsupported arch %v", pn, arch.Family)
371                         case sys.I386, sys.AMD64:
372                                 switch r.Type {
373                                 default:
374                                         return nil, fmt.Errorf("%s: %v: unknown relocation type %v", pn, state.sectsyms[rsect], r.Type)
375
376                                 case IMAGE_REL_I386_REL32, IMAGE_REL_AMD64_REL32,
377                                         IMAGE_REL_AMD64_ADDR32, // R_X86_64_PC32
378                                         IMAGE_REL_AMD64_ADDR32NB:
379                                         if r.Type == IMAGE_REL_AMD64_ADDR32NB {
380                                                 rType = objabi.R_PEIMAGEOFF
381                                         } else {
382                                                 rType = objabi.R_PCREL
383                                         }
384
385                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
386
387                                 case IMAGE_REL_I386_DIR32NB, IMAGE_REL_I386_DIR32:
388                                         if r.Type == IMAGE_REL_I386_DIR32NB {
389                                                 rType = objabi.R_PEIMAGEOFF
390                                         } else {
391                                                 rType = objabi.R_ADDR
392                                         }
393
394                                         // load addend from image
395                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
396
397                                 case IMAGE_REL_AMD64_ADDR64: // R_X86_64_64
398                                         rSize = 8
399
400                                         rType = objabi.R_ADDR
401
402                                         // load addend from image
403                                         rAdd = int64(binary.LittleEndian.Uint64(state.sectdata[rsect][rOff:]))
404                                 }
405
406                         case sys.ARM:
407                                 switch r.Type {
408                                 default:
409                                         return nil, fmt.Errorf("%s: %v: unknown ARM relocation type %v", pn, state.sectsyms[rsect], r.Type)
410
411                                 case IMAGE_REL_ARM_SECREL:
412                                         rType = objabi.R_PCREL
413
414                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
415
416                                 case IMAGE_REL_ARM_ADDR32, IMAGE_REL_ARM_ADDR32NB:
417                                         if r.Type == IMAGE_REL_ARM_ADDR32NB {
418                                                 rType = objabi.R_PEIMAGEOFF
419                                         } else {
420                                                 rType = objabi.R_ADDR
421                                         }
422
423                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
424
425                                 case IMAGE_REL_ARM_BRANCH24:
426                                         rType = objabi.R_CALLARM
427
428                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
429                                 }
430
431                         case sys.ARM64:
432                                 switch r.Type {
433                                 default:
434                                         return nil, fmt.Errorf("%s: %v: unknown ARM64 relocation type %v", pn, state.sectsyms[rsect], r.Type)
435
436                                 case IMAGE_REL_ARM64_ADDR32, IMAGE_REL_ARM64_ADDR32NB:
437                                         if r.Type == IMAGE_REL_ARM64_ADDR32NB {
438                                                 rType = objabi.R_PEIMAGEOFF
439                                         } else {
440                                                 rType = objabi.R_ADDR
441                                         }
442
443                                         rAdd = int64(int32(binary.LittleEndian.Uint32(state.sectdata[rsect][rOff:])))
444                                 }
445                         }
446
447                         // ld -r could generate multiple section symbols for the
448                         // same section but with different values, we have to take
449                         // that into account, or in the case of split resources,
450                         // the section and its symbols are split into two sections.
451                         if issect(pesym) || splitResources {
452                                 rAdd += int64(pesym.Value)
453                         }
454                         if issehsect {
455                                 // .pdata and .xdata sections can contain records
456                                 // associated to functions that won't be used in
457                                 // the final binary, in which case the relocation
458                                 // target symbol won't be reachable.
459                                 rType |= objabi.R_WEAK
460                         }
461
462                         rel, _ := sb.AddRel(rType)
463                         rel.SetOff(rOff)
464                         rel.SetSiz(rSize)
465                         rel.SetSym(rSym)
466                         rel.SetAdd(rAdd)
467
468                 }
469
470                 sb.SortRelocs()
471         }
472
473         // enter sub-symbols into symbol table.
474         for i, numaux := 0, 0; i < len(f.COFFSymbols); i += numaux + 1 {
475                 pesym := &f.COFFSymbols[i]
476
477                 numaux = int(pesym.NumberOfAuxSymbols)
478
479                 name, err := pesym.FullName(f.StringTable)
480                 if err != nil {
481                         return nil, err
482                 }
483                 if name == "" {
484                         continue
485                 }
486                 if issect(pesym) {
487                         continue
488                 }
489                 if int(pesym.SectionNumber) > len(f.Sections) {
490                         continue
491                 }
492                 if pesym.SectionNumber == IMAGE_SYM_DEBUG {
493                         continue
494                 }
495                 if pesym.SectionNumber == IMAGE_SYM_ABSOLUTE && bytes.Equal(pesym.Name[:], []byte("@feat.00")) {
496                         // Microsoft's linker looks at whether all input objects have an empty
497                         // section called @feat.00. If all of them do, then it enables SEH;
498                         // otherwise it doesn't enable that feature. So, since around the Windows
499                         // XP SP2 era, most tools that make PE objects just tack on that section,
500                         // so that it won't gimp Microsoft's linker logic. Go doesn't support SEH,
501                         // so in theory, none of this really matters to us. But actually, if the
502                         // linker tries to ingest an object with @feat.00 -- which are produced by
503                         // LLVM's resource compiler, for example -- it chokes because of the
504                         // IMAGE_SYM_ABSOLUTE section that it doesn't know how to deal with. Since
505                         // @feat.00 is just a marking anyway, skip IMAGE_SYM_ABSOLUTE sections that
506                         // are called @feat.00.
507                         continue
508                 }
509                 var sect *pe.Section
510                 if pesym.SectionNumber > 0 {
511                         sect = f.Sections[pesym.SectionNumber-1]
512                         if _, found := state.sectsyms[sect]; !found {
513                                 continue
514                         }
515                 }
516
517                 bld, s, err := state.readpesym(pesym)
518                 if err != nil {
519                         return nil, err
520                 }
521
522                 if pesym.SectionNumber == 0 { // extern
523                         if l.SymType(s) == sym.SXREF && pesym.Value > 0 { // global data
524                                 bld = makeUpdater(l, bld, s)
525                                 bld.SetType(sym.SNOPTRDATA)
526                                 bld.SetSize(int64(pesym.Value))
527                         }
528
529                         continue
530                 } else if pesym.SectionNumber > 0 && int(pesym.SectionNumber) <= len(f.Sections) {
531                         sect = f.Sections[pesym.SectionNumber-1]
532                         if _, found := state.sectsyms[sect]; !found {
533                                 return nil, fmt.Errorf("%s: %v: missing sect.sym", pn, s)
534                         }
535                 } else {
536                         return nil, fmt.Errorf("%s: %v: sectnum < 0!", pn, s)
537                 }
538
539                 if sect == nil {
540                         return nil, nil
541                 }
542
543                 // Check for COMDAT symbol.
544                 if sz, ok1 := state.comdats[uint16(pesym.SectionNumber-1)]; ok1 {
545                         if psz, ok2 := comdatDefinitions[l.SymName(s)]; ok2 {
546                                 if sz == psz {
547                                         //  OK to discard, we've seen an instance
548                                         // already.
549                                         continue
550                                 }
551                         }
552                 }
553                 if l.OuterSym(s) != 0 {
554                         if l.AttrDuplicateOK(s) {
555                                 continue
556                         }
557                         outerName := l.SymName(l.OuterSym(s))
558                         sectName := l.SymName(state.sectsyms[sect])
559                         return nil, fmt.Errorf("%s: duplicate symbol reference: %s in both %s and %s", pn, l.SymName(s), outerName, sectName)
560                 }
561
562                 bld = makeUpdater(l, bld, s)
563                 sectsym := state.sectsyms[sect]
564                 bld.SetType(l.SymType(sectsym))
565                 l.AddInteriorSym(sectsym, s)
566                 bld.SetValue(int64(pesym.Value))
567                 bld.SetSize(4)
568                 if l.SymType(sectsym) == sym.STEXT {
569                         if bld.External() && !bld.DuplicateOK() {
570                                 return nil, fmt.Errorf("%s: duplicate symbol definition", l.SymName(s))
571                         }
572                         bld.SetExternal(true)
573                 }
574                 if sz, ok := state.comdats[uint16(pesym.SectionNumber-1)]; ok {
575                         // This is a COMDAT definition. Record that we're picking
576                         // this instance so that we can ignore future defs.
577                         if _, ok := comdatDefinitions[l.SymName(s)]; ok {
578                                 return nil, fmt.Errorf("internal error: preexisting COMDAT definition for %q", name)
579                         }
580                         comdatDefinitions[l.SymName(s)] = sz
581                 }
582         }
583
584         // Sort outer lists by address, adding to textp.
585         // This keeps textp in increasing address order.
586         for _, sect := range f.Sections {
587                 s := state.sectsyms[sect]
588                 if s == 0 {
589                         continue
590                 }
591                 l.SortSub(s)
592                 importSymsState.secSyms = append(importSymsState.secSyms, s)
593                 if l.SymType(s) == sym.STEXT {
594                         for ; s != 0; s = l.SubSym(s) {
595                                 if l.AttrOnList(s) {
596                                         return nil, fmt.Errorf("symbol %s listed multiple times", l.SymName(s))
597                                 }
598                                 l.SetAttrOnList(s, true)
599                                 ls.Textp = append(ls.Textp, s)
600                         }
601                 }
602         }
603
604         if ls.PData != 0 {
605                 processSEH(l, arch, ls.PData, ls.XData)
606         }
607
608         return &ls, nil
609 }
610
611 // PostProcessImports works to resolve inconsistencies with DLL import
612 // symbols; it is needed when building with more "modern" C compilers
613 // with internal linkage.
614 //
615 // Background: DLL import symbols are data (SNOPTRDATA) symbols whose
616 // name is of the form "__imp_XXX", which contain a pointer/reference
617 // to symbol XXX. It's possible to have import symbols for both data
618 // symbols ("__imp__fmode") and text symbols ("__imp_CreateEventA").
619 // In some case import symbols are just references to some external
620 // thing, and in other cases we see actual definitions of import
621 // symbols when reading host objects.
622 //
623 // Previous versions of the linker would in most cases immediately
624 // "forward" import symbol references, e.g. treat a references to
625 // "__imp_XXX" a references to "XXX", however this doesn't work well
626 // with more modern compilers, where you can sometimes see import
627 // symbols that are defs (as opposed to external refs).
628 //
629 // The main actions taken below are to search for references to
630 // SDYNIMPORT symbols in host object text/data sections and flag the
631 // symbols for later fixup. When we see a reference to an import
632 // symbol __imp_XYZ where XYZ corresponds to some SDYNIMPORT symbol,
633 // we flag the symbol (via GOT setting) so that it can be redirected
634 // to XYZ later in windynrelocsym. When we see a direct reference to
635 // an SDYNIMPORT symbol XYZ, we also flag the symbol (via PLT setting)
636 // to indicated that the reference will need to be redirected to a
637 // stub.
638 func PostProcessImports() error {
639         ldr := importSymsState.l
640         arch := importSymsState.arch
641         keeprelocneeded := make(map[loader.Sym]loader.Sym)
642         for _, s := range importSymsState.secSyms {
643                 isText := ldr.SymType(s) == sym.STEXT
644                 relocs := ldr.Relocs(s)
645                 for i := 0; i < relocs.Count(); i++ {
646                         r := relocs.At(i)
647                         rs := r.Sym()
648                         if ldr.SymType(rs) == sym.SDYNIMPORT {
649                                 // Tag the symbol for later stub generation.
650                                 ldr.SetPlt(rs, CreateImportStubPltToken)
651                                 continue
652                         }
653                         isym, err := LookupBaseFromImport(rs, ldr, arch)
654                         if err != nil {
655                                 return err
656                         }
657                         if isym == 0 {
658                                 continue
659                         }
660                         if ldr.SymType(isym) != sym.SDYNIMPORT {
661                                 continue
662                         }
663                         // For non-text symbols, forward the reference from __imp_X to
664                         // X immediately.
665                         if !isText {
666                                 r.SetSym(isym)
667                                 continue
668                         }
669                         // Flag this imp symbol to be processed later in windynrelocsym.
670                         ldr.SetGot(rs, RedirectToDynImportGotToken)
671                         // Consistency check: should be no PLT token here.
672                         splt := ldr.SymPlt(rs)
673                         if splt != -1 {
674                                 return fmt.Errorf("internal error: import symbol %q has invalid PLT setting %d", ldr.SymName(rs), splt)
675                         }
676                         // Flag for dummy relocation.
677                         keeprelocneeded[rs] = isym
678                 }
679         }
680         for k, v := range keeprelocneeded {
681                 sb := ldr.MakeSymbolUpdater(k)
682                 r, _ := sb.AddRel(objabi.R_KEEP)
683                 r.SetSym(v)
684         }
685         importSymsState = nil
686         return nil
687 }
688
689 func issehsect(arch *sys.Arch, s *pe.Section) bool {
690         return arch.Family == sys.AMD64 && (s.Name == ".pdata" || s.Name == ".xdata")
691 }
692
693 func issect(s *pe.COFFSymbol) bool {
694         return s.StorageClass == IMAGE_SYM_CLASS_STATIC && s.Type == 0 && s.Name[0] == '.'
695 }
696
697 func (state *peLoaderState) readpesym(pesym *pe.COFFSymbol) (*loader.SymbolBuilder, loader.Sym, error) {
698         symname, err := pesym.FullName(state.f.StringTable)
699         if err != nil {
700                 return nil, 0, err
701         }
702         var name string
703         if issect(pesym) {
704                 name = state.l.SymName(state.sectsyms[state.f.Sections[pesym.SectionNumber-1]])
705         } else {
706                 name = symname
707                 // A note on the "_main" exclusion below: the main routine
708                 // defined by the Go runtime is named "_main", not "main", so
709                 // when reading references to _main from a host object we want
710                 // to avoid rewriting "_main" to "main" in this specific
711                 // instance. See #issuecomment-1143698749 on #35006 for more
712                 // details on this problem.
713                 if state.arch.Family == sys.I386 && name[0] == '_' && name != "_main" && !strings.HasPrefix(name, "__imp_") {
714                         name = name[1:] // _Name => Name
715                 }
716         }
717
718         // remove last @XXX
719         if i := strings.LastIndex(name, "@"); i >= 0 {
720                 name = name[:i]
721         }
722
723         var s loader.Sym
724         var bld *loader.SymbolBuilder
725         // Microsoft's PE documentation is contradictory. It says that the symbol's complex type
726         // is stored in the pesym.Type most significant byte, but MSVC, LLVM, and mingw store it
727         // in the 4 high bits of the less significant byte.
728         switch uint8(pesym.Type&0xf0) >> 4 {
729         default:
730                 return nil, 0, fmt.Errorf("%s: invalid symbol type %d", symname, pesym.Type)
731
732         case IMAGE_SYM_DTYPE_FUNCTION, IMAGE_SYM_DTYPE_NULL:
733                 switch pesym.StorageClass {
734                 case IMAGE_SYM_CLASS_EXTERNAL: //global
735                         s = state.l.LookupOrCreateCgoExport(name, 0)
736
737                 case IMAGE_SYM_CLASS_NULL, IMAGE_SYM_CLASS_STATIC, IMAGE_SYM_CLASS_LABEL:
738                         s = state.l.LookupOrCreateCgoExport(name, state.localSymVersion)
739                         bld = makeUpdater(state.l, bld, s)
740                         bld.SetDuplicateOK(true)
741
742                 default:
743                         return nil, 0, fmt.Errorf("%s: invalid symbol binding %d", symname, pesym.StorageClass)
744                 }
745         }
746
747         if s != 0 && state.l.SymType(s) == 0 && (pesym.StorageClass != IMAGE_SYM_CLASS_STATIC || pesym.Value != 0) {
748                 bld = makeUpdater(state.l, bld, s)
749                 bld.SetType(sym.SXREF)
750         }
751
752         return bld, s, nil
753 }
754
755 // preprocessSymbols walks the COFF symbols for the PE file we're
756 // reading and looks for cases where we have both a symbol definition
757 // for "XXX" and an "__imp_XXX" symbol, recording these cases in a map
758 // in the state struct. This information will be used in readpesym()
759 // above to give such symbols special treatment. This function also
760 // gathers information about COMDAT sections/symbols for later use
761 // in readpesym().
762 func (state *peLoaderState) preprocessSymbols() error {
763
764         // Locate comdat sections.
765         state.comdats = make(map[uint16]int64)
766         for i, s := range state.f.Sections {
767                 if s.Characteristics&uint32(pe.IMAGE_SCN_LNK_COMDAT) != 0 {
768                         state.comdats[uint16(i)] = int64(s.Size)
769                 }
770         }
771
772         // Examine symbol defs.
773         for i, numaux := 0, 0; i < len(state.f.COFFSymbols); i += numaux + 1 {
774                 pesym := &state.f.COFFSymbols[i]
775                 numaux = int(pesym.NumberOfAuxSymbols)
776                 if pesym.SectionNumber == 0 { // extern
777                         continue
778                 }
779                 symname, err := pesym.FullName(state.f.StringTable)
780                 if err != nil {
781                         return err
782                 }
783                 if _, isc := state.comdats[uint16(pesym.SectionNumber-1)]; !isc {
784                         continue
785                 }
786                 if pesym.StorageClass != uint8(IMAGE_SYM_CLASS_STATIC) {
787                         continue
788                 }
789                 // This symbol corresponds to a COMDAT section. Read the
790                 // aux data for it.
791                 auxsymp, err := state.f.COFFSymbolReadSectionDefAux(i)
792                 if err != nil {
793                         return fmt.Errorf("unable to read aux info for section def symbol %d %s: pe.COFFSymbolReadComdatInfo returns %v", i, symname, err)
794                 }
795                 if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_SAME_SIZE {
796                         // This is supported.
797                 } else if auxsymp.Selection == pe.IMAGE_COMDAT_SELECT_ANY {
798                         // Also supported.
799                         state.comdats[uint16(pesym.SectionNumber-1)] = int64(-1)
800                 } else {
801                         // We don't support any of the other strategies at the
802                         // moment. I suspect that we may need to also support
803                         // "associative", we'll see.
804                         return fmt.Errorf("internal error: unsupported COMDAT selection strategy found in path=%s sec=%d strategy=%d idx=%d, please file a bug", state.pn, auxsymp.SecNum, auxsymp.Selection, i)
805                 }
806         }
807         return nil
808 }
809
810 // LookupBaseFromImport examines the symbol "s" to see if it
811 // corresponds to an import symbol (name of the form "__imp_XYZ") and
812 // if so, it looks up the underlying target of the import symbol and
813 // returns it. An error is returned if the symbol is of the form
814 // "__imp_XYZ" but no XYZ can be found.
815 func LookupBaseFromImport(s loader.Sym, ldr *loader.Loader, arch *sys.Arch) (loader.Sym, error) {
816         sname := ldr.SymName(s)
817         if !strings.HasPrefix(sname, "__imp_") {
818                 return 0, nil
819         }
820         basename := sname[len("__imp_"):]
821         if arch.Family == sys.I386 && basename[0] == '_' {
822                 basename = basename[1:] // _Name => Name
823         }
824         isym := ldr.Lookup(basename, 0)
825         if isym == 0 {
826                 return 0, fmt.Errorf("internal error: import symbol %q with no underlying sym", sname)
827         }
828         return isym, nil
829 }