# coding: utf-8 # PyGOST -- Pure Python GOST cryptographic functions library # Copyright (C) 2015-2020 Sergey Matveev # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . from os import urandom from random import randint from unittest import TestCase from pygost.gost3412 import GOST3412Kuznechik from pygost.gost3412 import GOST3412Magma from pygost.gost3413 import _mac_ks from pygost.gost3413 import acpkm from pygost.gost3413 import acpkm_master from pygost.gost3413 import cbc_decrypt from pygost.gost3413 import cbc_encrypt from pygost.gost3413 import cfb_decrypt from pygost.gost3413 import cfb_encrypt from pygost.gost3413 import ctr from pygost.gost3413 import ctr_acpkm from pygost.gost3413 import ecb_decrypt from pygost.gost3413 import ecb_encrypt from pygost.gost3413 import KEYSIZE from pygost.gost3413 import mac from pygost.gost3413 import mac_acpkm_master from pygost.gost3413 import ofb from pygost.gost3413 import pad2 from pygost.gost3413 import unpad2 from pygost.utils import hexdec from pygost.utils import hexenc from pygost.utils import strxor class Pad2Test(TestCase): def test_symmetric(self): for _ in range(100): for blocksize in (GOST3412Magma.blocksize, GOST3412Kuznechik.blocksize): data = urandom(randint(0, blocksize * 3)) self.assertSequenceEqual( unpad2(pad2(data, blocksize), blocksize), data, ) class GOST3412KuznechikModesTest(TestCase): key = hexdec("8899aabbccddeeff0011223344556677fedcba98765432100123456789abcdef") ciph = GOST3412Kuznechik(key) plaintext = "" plaintext += "1122334455667700ffeeddccbbaa9988" plaintext += "00112233445566778899aabbcceeff0a" plaintext += "112233445566778899aabbcceeff0a00" plaintext += "2233445566778899aabbcceeff0a0011" iv = hexdec("1234567890abcef0a1b2c3d4e5f0011223344556677889901213141516171819") def test_ecb_vectors(self): ciphtext = "" ciphtext += "7f679d90bebc24305a468d42b9d4edcd" ciphtext += "b429912c6e0032f9285452d76718d08b" ciphtext += "f0ca33549d247ceef3f5a5313bd4b157" ciphtext += "d0b09ccde830b9eb3a02c4c5aa8ada98" self.assertSequenceEqual( hexenc(ecb_encrypt( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), )), ciphtext, ) self.assertSequenceEqual( hexenc(ecb_decrypt( self.ciph.decrypt, GOST3412Kuznechik.blocksize, hexdec(ciphtext), )), self.plaintext, ) def test_ecb_symmetric(self): for _ in range(100): pt = pad2(urandom(randint(0, 16 * 2)), GOST3412Kuznechik.blocksize) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) ct = ecb_encrypt(ciph.encrypt, GOST3412Kuznechik.blocksize, pt) self.assertSequenceEqual(ecb_decrypt( ciph.decrypt, GOST3412Kuznechik.blocksize, ct, ), pt) def test_ctr_vectors(self): ciphtext = "" ciphtext += "f195d8bec10ed1dbd57b5fa240bda1b8" ciphtext += "85eee733f6a13e5df33ce4b33c45dee4" ciphtext += "a5eae88be6356ed3d5e877f13564a3a5" ciphtext += "cb91fab1f20cbab6d1c6d15820bdba73" iv = self.iv[:GOST3412Kuznechik.blocksize // 2] self.assertSequenceEqual( hexenc(ctr( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(ctr( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(ciphtext), iv, )), self.plaintext, ) def test_ctr_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Kuznechik.blocksize // 2) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) ct = ctr(ciph.encrypt, GOST3412Kuznechik.blocksize, pt, iv) self.assertSequenceEqual(ctr( ciph.encrypt, GOST3412Kuznechik.blocksize, ct, iv, ), pt) def test_ofb_vectors(self): ciphtext = "" ciphtext += "81800a59b1842b24ff1f795e897abd95" ciphtext += "ed5b47a7048cfab48fb521369d9326bf" ciphtext += "66a257ac3ca0b8b1c80fe7fc10288a13" ciphtext += "203ebbc066138660a0292243f6903150" self.assertSequenceEqual( hexenc(ofb( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), self.iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(ofb( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(ciphtext), self.iv, )), self.plaintext, ) def test_ofb_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Kuznechik.blocksize * 2) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) ct = ofb(ciph.encrypt, GOST3412Kuznechik.blocksize, pt, iv) self.assertSequenceEqual(ofb( ciph.encrypt, GOST3412Kuznechik.blocksize, ct, iv, ), pt) def test_ofb_manual(self): iv = [urandom(GOST3412Kuznechik.blocksize) for _ in range(randint(2, 10))] pt = [ urandom(GOST3412Kuznechik.blocksize) for _ in range(len(iv), len(iv) + randint(1, 10)) ] ciph = GOST3412Kuznechik(urandom(KEYSIZE)) r = [ciph.encrypt(i) for i in iv] for i in range(len(pt) - len(iv)): r.append(ciph.encrypt(r[i])) ct = [strxor(g, r) for g, r in zip(pt, r)] self.assertSequenceEqual( ofb(ciph.encrypt, GOST3412Kuznechik.blocksize, b"".join(pt), b"".join(iv)), b"".join(ct), ) def test_cbc_vectors(self): ciphtext = "" ciphtext += "689972d4a085fa4d90e52e3d6d7dcc27" ciphtext += "2826e661b478eca6af1e8e448d5ea5ac" ciphtext += "fe7babf1e91999e85640e8b0f49d90d0" ciphtext += "167688065a895c631a2d9a1560b63970" self.assertSequenceEqual( hexenc(cbc_encrypt( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), self.iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(cbc_decrypt( self.ciph.decrypt, GOST3412Kuznechik.blocksize, hexdec(ciphtext), self.iv, )), self.plaintext, ) def test_cbc_symmetric(self): for _ in range(100): pt = pad2(urandom(randint(0, 16 * 2)), GOST3412Kuznechik.blocksize) iv = urandom(GOST3412Kuznechik.blocksize * 2) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) ct = cbc_encrypt(ciph.encrypt, GOST3412Kuznechik.blocksize, pt, iv) self.assertSequenceEqual(cbc_decrypt( ciph.decrypt, GOST3412Kuznechik.blocksize, ct, iv, ), pt) def test_cfb_vectors(self): ciphtext = "" ciphtext += "81800a59b1842b24ff1f795e897abd95" ciphtext += "ed5b47a7048cfab48fb521369d9326bf" ciphtext += "79f2a8eb5cc68d38842d264e97a238b5" ciphtext += "4ffebecd4e922de6c75bd9dd44fbf4d1" self.assertSequenceEqual( hexenc(cfb_encrypt( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), self.iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(cfb_decrypt( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(ciphtext), self.iv, )), self.plaintext, ) def test_cfb_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Kuznechik.blocksize * 2) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) ct = cfb_encrypt(ciph.encrypt, GOST3412Kuznechik.blocksize, pt, iv) self.assertSequenceEqual(cfb_decrypt( ciph.encrypt, GOST3412Kuznechik.blocksize, ct, iv, ), pt) def test_mac_vectors(self): k1, k2 = _mac_ks(self.ciph.encrypt, GOST3412Kuznechik.blocksize) self.assertSequenceEqual(hexenc(k1), "297d82bc4d39e3ca0de0573298151dc7") self.assertSequenceEqual(hexenc(k2), "52fb05789a73c7941bc0ae65302a3b8e") self.assertSequenceEqual( hexenc(mac( self.ciph.encrypt, GOST3412Kuznechik.blocksize, hexdec(self.plaintext), )[:8]), "336f4d296059fbe3", ) def test_mac_applies(self): for _ in range(100): data = urandom(randint(0, 16 * 2)) ciph = GOST3412Kuznechik(urandom(KEYSIZE)) mac(ciph.encrypt, GOST3412Kuznechik.blocksize, data) class GOST3412MagmaModesTest(TestCase): key = hexdec("ffeeddccbbaa99887766554433221100f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff") ciph = GOST3412Magma(key) plaintext = "" plaintext += "92def06b3c130a59" plaintext += "db54c704f8189d20" plaintext += "4a98fb2e67a8024c" plaintext += "8912409b17b57e41" iv = hexdec("1234567890abcdef234567890abcdef134567890abcdef12") def test_ecb_vectors(self): ciphtext = "" ciphtext += "2b073f0494f372a0" ciphtext += "de70e715d3556e48" ciphtext += "11d8d9e9eacfbc1e" ciphtext += "7c68260996c67efb" self.assertSequenceEqual( hexenc(ecb_encrypt( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), )), ciphtext, ) self.assertSequenceEqual( hexenc(ecb_decrypt( self.ciph.decrypt, GOST3412Magma.blocksize, hexdec(ciphtext), )), self.plaintext, ) def test_ecb_symmetric(self): for _ in range(100): pt = pad2(urandom(randint(0, 16 * 2)), 16) ciph = GOST3412Magma(urandom(KEYSIZE)) ct = ecb_encrypt(ciph.encrypt, GOST3412Magma.blocksize, pt) self.assertSequenceEqual(ecb_decrypt( ciph.decrypt, GOST3412Magma.blocksize, ct, ), pt) def test_ctr_vectors(self): ciphtext = "" ciphtext += "4e98110c97b7b93c" ciphtext += "3e250d93d6e85d69" ciphtext += "136d868807b2dbef" ciphtext += "568eb680ab52a12d" iv = self.iv[:4] self.assertSequenceEqual( hexenc(ctr( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(ctr( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(ciphtext), iv, )), self.plaintext, ) def test_ctr_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Magma.blocksize // 2) ciph = GOST3412Magma(urandom(KEYSIZE)) ct = ctr(ciph.encrypt, GOST3412Magma.blocksize, pt, iv) self.assertSequenceEqual(ctr( ciph.encrypt, GOST3412Magma.blocksize, ct, iv, ), pt) def test_ofb_vectors(self): iv = self.iv[:16] ciphtext = "" ciphtext += "db37e0e266903c83" ciphtext += "0d46644c1f9a089c" ciphtext += "a0f83062430e327e" ciphtext += "c824efb8bd4fdb05" self.assertSequenceEqual( hexenc(ofb( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(ofb( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(ciphtext), iv, )), self.plaintext, ) def test_ofb_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Magma.blocksize * 2) ciph = GOST3412Magma(urandom(KEYSIZE)) ct = ofb(ciph.encrypt, GOST3412Magma.blocksize, pt, iv) self.assertSequenceEqual(ofb( ciph.encrypt, GOST3412Magma.blocksize, ct, iv, ), pt) def test_cbc_vectors(self): ciphtext = "" ciphtext += "96d1b05eea683919" ciphtext += "aff76129abb937b9" ciphtext += "5058b4a1c4bc0019" ciphtext += "20b78b1a7cd7e667" self.assertSequenceEqual( hexenc(cbc_encrypt( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), self.iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(cbc_decrypt( self.ciph.decrypt, GOST3412Magma.blocksize, hexdec(ciphtext), self.iv, )), self.plaintext, ) def test_cbc_symmetric(self): for _ in range(100): pt = pad2(urandom(randint(0, 16 * 2)), 16) iv = urandom(GOST3412Magma.blocksize * 2) ciph = GOST3412Magma(urandom(KEYSIZE)) ct = cbc_encrypt(ciph.encrypt, GOST3412Magma.blocksize, pt, iv) self.assertSequenceEqual(cbc_decrypt( ciph.decrypt, GOST3412Magma.blocksize, ct, iv, ), pt) def test_cfb_vectors(self): iv = self.iv[:16] ciphtext = "" ciphtext += "db37e0e266903c83" ciphtext += "0d46644c1f9a089c" ciphtext += "24bdd2035315d38b" ciphtext += "bcc0321421075505" self.assertSequenceEqual( hexenc(cfb_encrypt( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), iv, )), ciphtext, ) self.assertSequenceEqual( hexenc(cfb_decrypt( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(ciphtext), iv, )), self.plaintext, ) def test_cfb_symmetric(self): for _ in range(100): pt = urandom(randint(0, 16 * 2)) iv = urandom(GOST3412Magma.blocksize * 2) ciph = GOST3412Magma(urandom(KEYSIZE)) ct = cfb_encrypt(ciph.encrypt, GOST3412Magma.blocksize, pt, iv) self.assertSequenceEqual(cfb_decrypt( ciph.encrypt, GOST3412Magma.blocksize, ct, iv, ), pt) def test_mac_vectors(self): k1, k2 = _mac_ks(self.ciph.encrypt, GOST3412Magma.blocksize) self.assertSequenceEqual(hexenc(k1), "5f459b3342521424") self.assertSequenceEqual(hexenc(k2), "be8b366684a42848") self.assertSequenceEqual( hexenc(mac( self.ciph.encrypt, GOST3412Magma.blocksize, hexdec(self.plaintext), )[:4]), "154e7210", ) def test_mac_applies(self): for _ in range(100): data = urandom(randint(0, 16 * 2)) ciph = GOST3412Magma(urandom(KEYSIZE)) mac(ciph.encrypt, GOST3412Magma.blocksize, data) class TestVectorACPKM(TestCase): """Test vectors from Р 1323565.1.017-2018 """ key = hexdec("8899AABBCCDDEEFF0011223344556677FEDCBA98765432100123456789ABCDEF") def test_magma_ctr_acpkm(self): key = acpkm(GOST3412Magma(self.key).encrypt, GOST3412Magma.blocksize) self.assertSequenceEqual(key, hexdec("863EA017842C3D372B18A85A28E2317D74BEFC107720DE0C9E8AB974ABD00CA0")) key = acpkm(GOST3412Magma(key).encrypt, GOST3412Magma.blocksize) self.assertSequenceEqual(key, hexdec("49A5E2677DE555982B8AD5E826652D17EEC847BF5B3997A81CF7FE7F1187BD27")) key = acpkm(GOST3412Magma(key).encrypt, GOST3412Magma.blocksize) self.assertSequenceEqual(key, hexdec("3256BF3F97B5667426A9FB1C5EAABE41893CCDD5A868F9B63B0AA90720FA43C4")) def test_magma_ctr(self): encrypter = GOST3412Magma(self.key).encrypt plaintext = hexdec(""" 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 22 33 44 55 66 77 88 99 """.replace("\n", "").replace(" ", "")) iv = hexdec("12345678") ciphertext = hexdec(""" 2A B8 1D EE EB 1E 4C AB 68 E1 04 C4 BD 6B 94 EA C7 2C 67 AF 6C 2E 5B 6B 0E AF B6 17 70 F1 B3 2E A1 AE 71 14 9E ED 13 82 AB D4 67 18 06 72 EC 6F 84 A2 F1 5B 3F CA 72 C1 """.replace("\n", "").replace(" ", "")) self.assertSequenceEqual( ctr_acpkm( GOST3412Magma, encrypter, bs=GOST3412Magma.blocksize, section_size=GOST3412Magma.blocksize * 2, data=plaintext, iv=iv ), ciphertext, ) self.assertSequenceEqual( ctr_acpkm( GOST3412Magma, encrypter, bs=GOST3412Magma.blocksize, section_size=GOST3412Magma.blocksize * 2, data=ciphertext, iv=iv ), plaintext, ) def test_kuznechik_ctr_acpkm(self): key = acpkm(GOST3412Kuznechik(self.key).encrypt, GOST3412Kuznechik.blocksize) self.assertSequenceEqual(key, hexdec("2666ED40AE687811745CA0B448F57A7B390ADB5780307E8E9659AC403AE60C60")) key = acpkm(GOST3412Kuznechik(key).encrypt, GOST3412Kuznechik.blocksize) self.assertSequenceEqual(key, hexdec("BB3DD5402E999B7A3DEBB0DB45448EC530F07365DFEE3ABA8415F77AC8F34CE8")) key = acpkm(GOST3412Kuznechik(key).encrypt, GOST3412Kuznechik.blocksize) self.assertSequenceEqual(key, hexdec("23362FD553CAD2178299A5B5A2D4722E3BB83C730A8BF57CE2DD004017F8C565")) def test_kuznechik_ctr(self): encrypter = GOST3412Kuznechik(self.key).encrypt iv = hexdec("1234567890ABCEF0") plaintext = hexdec(""" 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44 """.replace("\n", "").replace(" ", "")) ciphertext = hexdec(""" F1 95 D8 BE C1 0E D1 DB D5 7B 5F A2 40 BD A1 B8 85 EE E7 33 F6 A1 3E 5D F3 3C E4 B3 3C 45 DE E4 4B CE EB 8F 64 6F 4C 55 00 17 06 27 5E 85 E8 00 58 7C 4D F5 68 D0 94 39 3E 48 34 AF D0 80 50 46 CF 30 F5 76 86 AE EC E1 1C FC 6C 31 6B 8A 89 6E DF FD 07 EC 81 36 36 46 0C 4F 3B 74 34 23 16 3E 64 09 A9 C2 82 FA C8 D4 69 D2 21 E7 FB D6 DE 5D """.replace("\n", "").replace(" ", "")) self.assertSequenceEqual( ctr_acpkm( GOST3412Kuznechik, encrypter, bs=GOST3412Kuznechik.blocksize, section_size=GOST3412Kuznechik.blocksize * 2, data=plaintext, iv=iv, ), ciphertext, ) self.assertSequenceEqual( ctr_acpkm( GOST3412Kuznechik, encrypter, bs=GOST3412Kuznechik.blocksize, section_size=GOST3412Kuznechik.blocksize * 2, data=ciphertext, iv=iv, ), plaintext, ) def test_magma_omac_1_5_blocks(self): encrypter = GOST3412Magma(self.key).encrypt key_section_size = 640 // 8 self.assertSequenceEqual( acpkm_master( GOST3412Magma, encrypter, key_section_size=key_section_size, bs=GOST3412Magma.blocksize, keymat_len=KEYSIZE + GOST3412Magma.blocksize, ), hexdec("0DF2F5273DA328932AC49D81D36B2558A50DBF9BBCAC74A614B2CCB2F1CBCD8A70638E3DE8B3571E"), ) text = hexdec("1122334455667700FFEEDDCC") self.assertSequenceEqual( mac_acpkm_master( GOST3412Magma, encrypter, key_section_size, section_size=GOST3412Magma.blocksize * 2, bs=GOST3412Magma.blocksize, data=text, ), hexdec("A0540E3730ACBCF3"), ) def test_magma_omac_5_blocks(self): encrypter = GOST3412Magma(self.key).encrypt key_section_size = 640 // 8 self.assertSequenceEqual( acpkm_master( GOST3412Magma, encrypter, key_section_size=key_section_size, bs=GOST3412Magma.blocksize, keymat_len=3 * (KEYSIZE + GOST3412Magma.blocksize), ), hexdec(""" 0D F2 F5 27 3D A3 28 93 2A C4 9D 81 D3 6B 25 58 A5 0D BF 9B BC AC 74 A6 14 B2 CC B2 F1 CB CD 8A 70 63 8E 3D E8 B3 57 1E 8D 38 26 D5 5E 63 A1 67 E2 40 66 40 54 7B 9F 1F 5F 2B 43 61 2A AE AF DA 18 0B AC 86 04 DF A6 FE 53 C2 CE 27 0E 9C 9F 52 68 D0 FD BF E1 A3 BD D9 BE 5B 96 D0 A1 20 23 48 6E F1 71 0F 92 4A E0 31 30 52 CB 5F CA 0B 79 1E 1B AB E8 57 6D 0F E3 A8 """.replace("\n", "").replace(" ", "")), ) text = hexdec(""" 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 11 22 33 44 55 66 77 88 """.replace("\n", "").replace(" ", "")) self.assertSequenceEqual( mac_acpkm_master( GOST3412Magma, encrypter, key_section_size, section_size=GOST3412Magma.blocksize * 2, bs=GOST3412Magma.blocksize, data=text, ), hexdec("34008DAD5496BB8E"), ) def test_kuznechik_omac_1_5_blocks(self): encrypter = GOST3412Kuznechik(self.key).encrypt key_section_size = 768 // 8 self.assertSequenceEqual( acpkm_master( GOST3412Kuznechik, encrypter, key_section_size=key_section_size, bs=GOST3412Kuznechik.blocksize, keymat_len=KEYSIZE + GOST3412Kuznechik.blocksize, ), hexdec(""" 0C AB F1 F2 EF BC 4A C1 60 48 DF 1A 24 C6 05 B2 C0 D1 67 3D 75 86 A8 EC 0D D4 2C 45 A4 F9 5B AE 0F 2E 26 17 E4 71 48 68 0F C3 E6 17 8D F2 C1 37 """.replace("\n", "").replace(" ", "")) ) text = hexdec(""" 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00 11 22 33 44 55 66 77 """.replace("\n", "").replace(" ", "")) self.assertSequenceEqual( mac_acpkm_master( GOST3412Kuznechik, encrypter, key_section_size, section_size=GOST3412Kuznechik.blocksize * 2, bs=GOST3412Kuznechik.blocksize, data=text, ), hexdec("B5367F47B62B995EEB2A648C5843145E"), ) def test_kuznechik_omac_5_blocks(self): encrypter = GOST3412Kuznechik(self.key).encrypt key_section_size = 768 // 8 self.assertSequenceEqual( acpkm_master( GOST3412Kuznechik, encrypter, key_section_size=key_section_size, bs=GOST3412Kuznechik.blocksize, keymat_len=3 * (KEYSIZE + GOST3412Kuznechik.blocksize), ), hexdec(""" 0C AB F1 F2 EF BC 4A C1 60 48 DF 1A 24 C6 05 B2 C0 D1 67 3D 75 86 A8 EC 0D D4 2C 45 A4 F9 5B AE 0F 2E 26 17 E4 71 48 68 0F C3 E6 17 8D F2 C1 37 C9 DD A8 9C FF A4 91 FE AD D9 B3 EA B7 03 BB 31 BC 7E 92 7F 04 94 72 9F 51 B4 9D 3D F9 C9 46 08 00 FB BC F5 ED EE 61 0E A0 2F 01 09 3C 7B C7 42 D7 D6 27 15 01 B1 77 77 52 63 C2 A3 49 5A 83 18 A8 1C 79 A0 4F 29 66 0E A3 FD A8 74 C6 30 79 9E 14 2C 57 79 14 FE A9 0D 3B C2 50 2E 83 36 85 D9 """.replace("\n", "").replace(" ", "")), ) text = hexdec(""" 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 """.replace("\n", "").replace(" ", "")) self.assertSequenceEqual( mac_acpkm_master( GOST3412Kuznechik, encrypter, key_section_size, section_size=GOST3412Kuznechik.blocksize * 2, bs=GOST3412Kuznechik.blocksize, data=text, ), hexdec("FBB8DCEE45BEA67C35F58C5700898E5D"), )