// run // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Test maps, almost exhaustively. package main import ( "fmt" "math" "strconv" "time" ) const count = 100 func P(a []string) string { s := "{" for i := 0; i < len(a); i++ { if i > 0 { s += "," } s += `"` + a[i] + `"` } s += "}" return s } func main() { testbasic() testfloat() testnan() } func testbasic() { // Test a map literal. mlit := map[string]int{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4} for i := 0; i < len(mlit); i++ { s := string([]byte{byte(i) + '0'}) if mlit[s] != i { fmt.Printf("mlit[%s] = %d\n", s, mlit[s]) } } mib := make(map[int]bool) mii := make(map[int]int) mfi := make(map[float32]int) mif := make(map[int]float32) msi := make(map[string]int) mis := make(map[int]string) mss := make(map[string]string) mspa := make(map[string][]string) // BUG need an interface map both ways too type T struct { i int64 // can't use string here; struct values are only compared at the top level f float32 } mipT := make(map[int]*T) mpTi := make(map[*T]int) mit := make(map[int]T) // mti := make(map[T] int) type M map[int]int mipM := make(map[int]M) var apT [2 * count]*T for i := 0; i < count; i++ { s := strconv.Itoa(i) s10 := strconv.Itoa(i * 10) f := float32(i) t := T{int64(i), f} apT[i] = new(T) apT[i].i = int64(i) apT[i].f = f apT[2*i] = new(T) // need twice as many entries as we use, for the nonexistence check apT[2*i].i = int64(i) apT[2*i].f = f m := M{i: i + 1} mib[i] = (i != 0) mii[i] = 10 * i mfi[float32(i)] = 10 * i mif[i] = 10.0 * f mis[i] = s msi[s] = i mss[s] = s10 mss[s] = s10 as := make([]string, 2) as[0] = s10 as[1] = s10 mspa[s] = as mipT[i] = apT[i] mpTi[apT[i]] = i mipM[i] = m mit[i] = t // mti[t] = i } // test len if len(mib) != count { fmt.Printf("len(mib) = %d\n", len(mib)) } if len(mii) != count { fmt.Printf("len(mii) = %d\n", len(mii)) } if len(mfi) != count { fmt.Printf("len(mfi) = %d\n", len(mfi)) } if len(mif) != count { fmt.Printf("len(mif) = %d\n", len(mif)) } if len(msi) != count { fmt.Printf("len(msi) = %d\n", len(msi)) } if len(mis) != count { fmt.Printf("len(mis) = %d\n", len(mis)) } if len(mss) != count { fmt.Printf("len(mss) = %d\n", len(mss)) } if len(mspa) != count { fmt.Printf("len(mspa) = %d\n", len(mspa)) } if len(mipT) != count { fmt.Printf("len(mipT) = %d\n", len(mipT)) } if len(mpTi) != count { fmt.Printf("len(mpTi) = %d\n", len(mpTi)) } // if len(mti) != count { // fmt.Printf("len(mti) = %d\n", len(mti)) // } if len(mipM) != count { fmt.Printf("len(mipM) = %d\n", len(mipM)) } // if len(mti) != count { // fmt.Printf("len(mti) = %d\n", len(mti)) // } if len(mit) != count { fmt.Printf("len(mit) = %d\n", len(mit)) } // test construction directly for i := 0; i < count; i++ { s := strconv.Itoa(i) s10 := strconv.Itoa(i * 10) f := float32(i) // BUG m := M(i, i+1) if mib[i] != (i != 0) { fmt.Printf("mib[%d] = %t\n", i, mib[i]) } if mii[i] != 10*i { fmt.Printf("mii[%d] = %d\n", i, mii[i]) } if mfi[f] != 10*i { fmt.Printf("mfi[%d] = %d\n", i, mfi[f]) } if mif[i] != 10.0*f { fmt.Printf("mif[%d] = %g\n", i, mif[i]) } if mis[i] != s { fmt.Printf("mis[%d] = %s\n", i, mis[i]) } if msi[s] != i { fmt.Printf("msi[%s] = %d\n", s, msi[s]) } if mss[s] != s10 { fmt.Printf("mss[%s] = %g\n", s, mss[s]) } for j := 0; j < len(mspa[s]); j++ { if mspa[s][j] != s10 { fmt.Printf("mspa[%s][%d] = %s\n", s, j, mspa[s][j]) } } if mipT[i].i != int64(i) || mipT[i].f != f { fmt.Printf("mipT[%d] = %v\n", i, mipT[i]) } if mpTi[apT[i]] != i { fmt.Printf("mpTi[apT[%d]] = %d\n", i, mpTi[apT[i]]) } // if(mti[t] != i) { // fmt.Printf("mti[%s] = %s\n", s, mti[t]) // } if mipM[i][i] != i+1 { fmt.Printf("mipM[%d][%d] = %d\n", i, i, mipM[i][i]) } // if(mti[t] != i) { // fmt.Printf("mti[%v] = %d\n", t, mti[t]) // } if mit[i].i != int64(i) || mit[i].f != f { fmt.Printf("mit[%d] = {%d %g}\n", i, mit[i].i, mit[i].f) } } // test existence with tuple check // failed lookups yield a false value for the boolean. for i := 0; i < count; i++ { s := strconv.Itoa(i) f := float32(i) { _, b := mib[i] if !b { fmt.Printf("tuple existence decl: mib[%d]\n", i) } _, b = mib[i] if !b { fmt.Printf("tuple existence assign: mib[%d]\n", i) } } { _, b := mii[i] if !b { fmt.Printf("tuple existence decl: mii[%d]\n", i) } _, b = mii[i] if !b { fmt.Printf("tuple existence assign: mii[%d]\n", i) } } { _, b := mfi[f] if !b { fmt.Printf("tuple existence decl: mfi[%d]\n", i) } _, b = mfi[f] if !b { fmt.Printf("tuple existence assign: mfi[%d]\n", i) } } { _, b := mif[i] if !b { fmt.Printf("tuple existence decl: mif[%d]\n", i) } _, b = mif[i] if !b { fmt.Printf("tuple existence assign: mif[%d]\n", i) } } { _, b := mis[i] if !b { fmt.Printf("tuple existence decl: mis[%d]\n", i) } _, b = mis[i] if !b { fmt.Printf("tuple existence assign: mis[%d]\n", i) } } { _, b := msi[s] if !b { fmt.Printf("tuple existence decl: msi[%d]\n", i) } _, b = msi[s] if !b { fmt.Printf("tuple existence assign: msi[%d]\n", i) } } { _, b := mss[s] if !b { fmt.Printf("tuple existence decl: mss[%d]\n", i) } _, b = mss[s] if !b { fmt.Printf("tuple existence assign: mss[%d]\n", i) } } { _, b := mspa[s] if !b { fmt.Printf("tuple existence decl: mspa[%d]\n", i) } _, b = mspa[s] if !b { fmt.Printf("tuple existence assign: mspa[%d]\n", i) } } { _, b := mipT[i] if !b { fmt.Printf("tuple existence decl: mipT[%d]\n", i) } _, b = mipT[i] if !b { fmt.Printf("tuple existence assign: mipT[%d]\n", i) } } { _, b := mpTi[apT[i]] if !b { fmt.Printf("tuple existence decl: mpTi[apT[%d]]\n", i) } _, b = mpTi[apT[i]] if !b { fmt.Printf("tuple existence assign: mpTi[apT[%d]]\n", i) } } { _, b := mipM[i] if !b { fmt.Printf("tuple existence decl: mipM[%d]\n", i) } _, b = mipM[i] if !b { fmt.Printf("tuple existence assign: mipM[%d]\n", i) } } { _, b := mit[i] if !b { fmt.Printf("tuple existence decl: mit[%d]\n", i) } _, b = mit[i] if !b { fmt.Printf("tuple existence assign: mit[%d]\n", i) } } // { // _, b := mti[t] // if !b { // fmt.Printf("tuple existence decl: mti[%d]\n", i) // } // _, b = mti[t] // if !b { // fmt.Printf("tuple existence assign: mti[%d]\n", i) // } // } } // test nonexistence with tuple check // failed lookups yield a false value for the boolean. for i := count; i < 2*count; i++ { s := strconv.Itoa(i) f := float32(i) { _, b := mib[i] if b { fmt.Printf("tuple nonexistence decl: mib[%d]", i) } _, b = mib[i] if b { fmt.Printf("tuple nonexistence assign: mib[%d]", i) } } { _, b := mii[i] if b { fmt.Printf("tuple nonexistence decl: mii[%d]", i) } _, b = mii[i] if b { fmt.Printf("tuple nonexistence assign: mii[%d]", i) } } { _, b := mfi[f] if b { fmt.Printf("tuple nonexistence decl: mfi[%d]", i) } _, b = mfi[f] if b { fmt.Printf("tuple nonexistence assign: mfi[%d]", i) } } { _, b := mif[i] if b { fmt.Printf("tuple nonexistence decl: mif[%d]", i) } _, b = mif[i] if b { fmt.Printf("tuple nonexistence assign: mif[%d]", i) } } { _, b := mis[i] if b { fmt.Printf("tuple nonexistence decl: mis[%d]", i) } _, b = mis[i] if b { fmt.Printf("tuple nonexistence assign: mis[%d]", i) } } { _, b := msi[s] if b { fmt.Printf("tuple nonexistence decl: msi[%d]", i) } _, b = msi[s] if b { fmt.Printf("tuple nonexistence assign: msi[%d]", i) } } { _, b := mss[s] if b { fmt.Printf("tuple nonexistence decl: mss[%d]", i) } _, b = mss[s] if b { fmt.Printf("tuple nonexistence assign: mss[%d]", i) } } { _, b := mspa[s] if b { fmt.Printf("tuple nonexistence decl: mspa[%d]", i) } _, b = mspa[s] if b { fmt.Printf("tuple nonexistence assign: mspa[%d]", i) } } { _, b := mipT[i] if b { fmt.Printf("tuple nonexistence decl: mipT[%d]", i) } _, b = mipT[i] if b { fmt.Printf("tuple nonexistence assign: mipT[%d]", i) } } { _, b := mpTi[apT[i]] if b { fmt.Printf("tuple nonexistence decl: mpTi[apt[%d]]", i) } _, b = mpTi[apT[i]] if b { fmt.Printf("tuple nonexistence assign: mpTi[apT[%d]]", i) } } { _, b := mipM[i] if b { fmt.Printf("tuple nonexistence decl: mipM[%d]", i) } _, b = mipM[i] if b { fmt.Printf("tuple nonexistence assign: mipM[%d]", i) } } // { // _, b := mti[t] // if b { // fmt.Printf("tuple nonexistence decl: mti[%d]", i) // } // _, b = mti[t] // if b { // fmt.Printf("tuple nonexistence assign: mti[%d]", i) // } // } { _, b := mit[i] if b { fmt.Printf("tuple nonexistence decl: mit[%d]", i) } _, b = mit[i] if b { fmt.Printf("tuple nonexistence assign: mit[%d]", i) } } } // tests for structured map element updates for i := 0; i < count; i++ { s := strconv.Itoa(i) mspa[s][i%2] = "deleted" if mspa[s][i%2] != "deleted" { fmt.Printf("update mspa[%s][%d] = %s\n", s, i%2, mspa[s][i%2]) } mipT[i].i += 1 if mipT[i].i != int64(i)+1 { fmt.Printf("update mipT[%d].i = %d\n", i, mipT[i].i) } mipT[i].f = float32(i + 1) if mipT[i].f != float32(i+1) { fmt.Printf("update mipT[%d].f = %g\n", i, mipT[i].f) } mipM[i][i]++ if mipM[i][i] != (i+1)+1 { fmt.Printf("update mipM[%d][%d] = %d\n", i, i, mipM[i][i]) } } // test range on nil map var mnil map[string]int for _, _ = range mnil { panic("range mnil") } } func testfloat() { // Test floating point numbers in maps. // Two map keys refer to the same entry if the keys are ==. // The special cases, then, are that +0 == -0 and that NaN != NaN. { var ( pz = float32(0) nz = math.Float32frombits(1 << 31) nana = float32(math.NaN()) nanb = math.Float32frombits(math.Float32bits(nana) ^ 2) ) m := map[float32]string{ pz: "+0", nana: "NaN", nanb: "NaN", } if m[pz] != "+0" { fmt.Println("float32 map cannot read back m[+0]:", m[pz]) } if m[nz] != "+0" { fmt.Println("float32 map does not treat", pz, "and", nz, "as equal for read") fmt.Println("float32 map does not treat -0 and +0 as equal for read") } m[nz] = "-0" if m[pz] != "-0" { fmt.Println("float32 map does not treat -0 and +0 as equal for write") } if _, ok := m[nana]; ok { fmt.Println("float32 map allows NaN lookup (a)") } if _, ok := m[nanb]; ok { fmt.Println("float32 map allows NaN lookup (b)") } if len(m) != 3 { fmt.Println("float32 map should have 3 entries:", m) } m[nana] = "NaN" m[nanb] = "NaN" if len(m) != 5 { fmt.Println("float32 map should have 5 entries:", m) } } { var ( pz = float64(0) nz = math.Float64frombits(1 << 63) nana = float64(math.NaN()) nanb = math.Float64frombits(math.Float64bits(nana) ^ 2) ) m := map[float64]string{ pz: "+0", nana: "NaN", nanb: "NaN", } if m[nz] != "+0" { fmt.Println("float64 map does not treat -0 and +0 as equal for read") } m[nz] = "-0" if m[pz] != "-0" { fmt.Println("float64 map does not treat -0 and +0 as equal for write") } if _, ok := m[nana]; ok { fmt.Println("float64 map allows NaN lookup (a)") } if _, ok := m[nanb]; ok { fmt.Println("float64 map allows NaN lookup (b)") } if len(m) != 3 { fmt.Println("float64 map should have 3 entries:", m) } m[nana] = "NaN" m[nanb] = "NaN" if len(m) != 5 { fmt.Println("float64 map should have 5 entries:", m) } } { var ( pz = complex64(0) nz = complex(0, math.Float32frombits(1<<31)) nana = complex(5, float32(math.NaN())) nanb = complex(5, math.Float32frombits(math.Float32bits(float32(math.NaN()))^2)) ) m := map[complex64]string{ pz: "+0", nana: "NaN", nanb: "NaN", } if m[nz] != "+0" { fmt.Println("complex64 map does not treat -0 and +0 as equal for read") } m[nz] = "-0" if m[pz] != "-0" { fmt.Println("complex64 map does not treat -0 and +0 as equal for write") } if _, ok := m[nana]; ok { fmt.Println("complex64 map allows NaN lookup (a)") } if _, ok := m[nanb]; ok { fmt.Println("complex64 map allows NaN lookup (b)") } if len(m) != 3 { fmt.Println("complex64 map should have 3 entries:", m) } m[nana] = "NaN" m[nanb] = "NaN" if len(m) != 5 { fmt.Println("complex64 map should have 5 entries:", m) } } { var ( pz = complex128(0) nz = complex(0, math.Float64frombits(1<<63)) nana = complex(5, float64(math.NaN())) nanb = complex(5, math.Float64frombits(math.Float64bits(float64(math.NaN()))^2)) ) m := map[complex128]string{ pz: "+0", nana: "NaN", nanb: "NaN", } if m[nz] != "+0" { fmt.Println("complex128 map does not treat -0 and +0 as equal for read") } m[nz] = "-0" if m[pz] != "-0" { fmt.Println("complex128 map does not treat -0 and +0 as equal for write") } if _, ok := m[nana]; ok { fmt.Println("complex128 map allows NaN lookup (a)") } if _, ok := m[nanb]; ok { fmt.Println("complex128 map allows NaN lookup (b)") } if len(m) != 3 { fmt.Println("complex128 map should have 3 entries:", m) } m[nana] = "NaN" m[nanb] = "NaN" if len(m) != 5 { fmt.Println("complex128 map should have 5 entries:", m) } } } func testnan() { // Test that NaNs in maps don't go quadratic. t := func(n int) time.Duration { t0 := time.Now() m := map[float64]int{} nan := math.NaN() for i := 0; i < n; i++ { m[nan] = 1 } if len(m) != n { panic("wrong size map after nan insertion") } return time.Since(t0) } // Depending on the machine and OS, this test might be too fast // to measure with accurate enough granularity. On failure, // make it run longer, hoping that the timing granularity // is eventually sufficient. n := 30000 // 0.02 seconds on a MacBook Air fails := 0 for { t1 := t(n) t2 := t(2 * n) // should be 2x (linear); allow up to 3x if t2 < 3*t1 { return } fails++ if fails == 4 { fmt.Printf("too slow: %d inserts: %v; %d inserts: %v\n", n, t1, 2*n, t2) return } n *= 2 } }