// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testing import ( "flag" "fmt" "os" "runtime" "sync" "sync/atomic" "time" ) var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run") var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark") var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks") // Global lock to ensure only one benchmark runs at a time. var benchmarkLock sync.Mutex // Used for every benchmark for measuring memory. var memStats runtime.MemStats // An internal type but exported because it is cross-package; part of the implementation // of the "go test" command. type InternalBenchmark struct { Name string F func(b *B) } // B is a type passed to Benchmark functions to manage benchmark // timing and to specify the number of iterations to run. // // A benchmark ends when its Benchmark function returns or calls any of the methods // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods must be called // only from the goroutine running the Benchmark function. // The other reporting methods, such as the variations of Log and Error, // may be called simultaneously from multiple goroutines. // // Like in tests, benchmark logs are accumulated during execution // and dumped to standard error when done. Unlike in tests, benchmark logs // are always printed, so as not to hide output whose existence may be // affecting benchmark results. type B struct { common context *benchContext N int previousN int // number of iterations in the previous run previousDuration time.Duration // total duration of the previous run benchFunc func(b *B) benchTime time.Duration bytes int64 missingBytes bool // one of the subbenchmarks does not have bytes set. timerOn bool showAllocResult bool hasSub bool result BenchmarkResult parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines // The initial states of memStats.Mallocs and memStats.TotalAlloc. startAllocs uint64 startBytes uint64 // The net total of this test after being run. netAllocs uint64 netBytes uint64 } // StartTimer starts timing a test. This function is called automatically // before a benchmark starts, but it can also used to resume timing after // a call to StopTimer. func (b *B) StartTimer() { if !b.timerOn { runtime.ReadMemStats(&memStats) b.startAllocs = memStats.Mallocs b.startBytes = memStats.TotalAlloc b.start = time.Now() b.timerOn = true } } // StopTimer stops timing a test. This can be used to pause the timer // while performing complex initialization that you don't // want to measure. func (b *B) StopTimer() { if b.timerOn { b.duration += time.Now().Sub(b.start) runtime.ReadMemStats(&memStats) b.netAllocs += memStats.Mallocs - b.startAllocs b.netBytes += memStats.TotalAlloc - b.startBytes b.timerOn = false } } // ResetTimer zeros the elapsed benchmark time and memory allocation counters. // It does not affect whether the timer is running. func (b *B) ResetTimer() { if b.timerOn { runtime.ReadMemStats(&memStats) b.startAllocs = memStats.Mallocs b.startBytes = memStats.TotalAlloc b.start = time.Now() } b.duration = 0 b.netAllocs = 0 b.netBytes = 0 } // SetBytes records the number of bytes processed in a single operation. // If this is called, the benchmark will report ns/op and MB/s. func (b *B) SetBytes(n int64) { b.bytes = n } // ReportAllocs enables malloc statistics for this benchmark. // It is equivalent to setting -test.benchmem, but it only affects the // benchmark function that calls ReportAllocs. func (b *B) ReportAllocs() { b.showAllocResult = true } func (b *B) nsPerOp() int64 { if b.N <= 0 { return 0 } return b.duration.Nanoseconds() / int64(b.N) } // runN runs a single benchmark for the specified number of iterations. func (b *B) runN(n int) { benchmarkLock.Lock() defer benchmarkLock.Unlock() // Try to get a comparable environment for each run // by clearing garbage from previous runs. runtime.GC() b.N = n b.parallelism = 1 b.ResetTimer() b.StartTimer() b.benchFunc(b) b.StopTimer() b.previousN = n b.previousDuration = b.duration } func min(x, y int) int { if x > y { return y } return x } func max(x, y int) int { if x < y { return y } return x } // roundDown10 rounds a number down to the nearest power of 10. func roundDown10(n int) int { var tens = 0 // tens = floor(log_10(n)) for n >= 10 { n = n / 10 tens++ } // result = 10^tens result := 1 for i := 0; i < tens; i++ { result *= 10 } return result } // roundUp rounds x up to a number of the form [1eX, 2eX, 3eX, 5eX]. func roundUp(n int) int { base := roundDown10(n) switch { case n <= base: return base case n <= (2 * base): return 2 * base case n <= (3 * base): return 3 * base case n <= (5 * base): return 5 * base default: return 10 * base } } // probe runs benchFunc to examine if it has any subbenchmarks. func (b *B) probe() { if ctx := b.context; ctx != nil { // Extend maxLen, if needed. if n := len(b.name) + ctx.extLen + 1; n > ctx.maxLen { ctx.maxLen = n + 8 // Add additional slack to avoid too many jumps in size. } } go func() { // Signal that we're done whether we return normally // or by FailNow's runtime.Goexit. defer func() { b.signal <- true }() benchmarkLock.Lock() defer benchmarkLock.Unlock() b.N = 0 b.benchFunc(b) }() <-b.signal } // run executes the benchmark in a separate goroutine, including all of its // subbenchmarks. func (b *B) run() BenchmarkResult { if b.context != nil { // Running go test --test.bench b.context.processBench(b) // Must call doBench. } else { // Running func Benchmark. b.doBench() } return b.result } func (b *B) doBench() BenchmarkResult { go b.launch() <-b.signal return b.result } // launch launches the benchmark function. It gradually increases the number // of benchmark iterations until the benchmark runs for the requested benchtime. // launch is run by the doBench function as a separate goroutine. func (b *B) launch() { // Run the benchmark for a single iteration in case it's expensive. n := 1 // Signal that we're done whether we return normally // or by FailNow's runtime.Goexit. defer func() { b.signal <- true }() b.runN(n) // Run the benchmark for at least the specified amount of time. d := b.benchTime for !b.failed && b.duration < d && n < 1e9 { last := n // Predict required iterations. if b.nsPerOp() == 0 { n = 1e9 } else { n = int(d.Nanoseconds() / b.nsPerOp()) } // Run more iterations than we think we'll need (1.2x). // Don't grow too fast in case we had timing errors previously. // Be sure to run at least one more than last time. n = max(min(n+n/5, 100*last), last+1) // Round up to something easy to read. n = roundUp(n) b.runN(n) } b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes} } // The results of a benchmark run. type BenchmarkResult struct { N int // The number of iterations. T time.Duration // The total time taken. Bytes int64 // Bytes processed in one iteration. MemAllocs uint64 // The total number of memory allocations. MemBytes uint64 // The total number of bytes allocated. } func (r BenchmarkResult) NsPerOp() int64 { if r.N <= 0 { return 0 } return r.T.Nanoseconds() / int64(r.N) } func (r BenchmarkResult) mbPerSec() float64 { if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 { return 0 } return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds() } func (r BenchmarkResult) AllocsPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemAllocs) / int64(r.N) } func (r BenchmarkResult) AllocedBytesPerOp() int64 { if r.N <= 0 { return 0 } return int64(r.MemBytes) / int64(r.N) } func (r BenchmarkResult) String() string { mbs := r.mbPerSec() mb := "" if mbs != 0 { mb = fmt.Sprintf("\t%7.2f MB/s", mbs) } nsop := r.NsPerOp() ns := fmt.Sprintf("%10d ns/op", nsop) if r.N > 0 && nsop < 100 { // The format specifiers here make sure that // the ones digits line up for all three possible formats. if nsop < 10 { ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) } else { ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N)) } } return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb) } func (r BenchmarkResult) MemString() string { return fmt.Sprintf("%8d B/op\t%8d allocs/op", r.AllocedBytesPerOp(), r.AllocsPerOp()) } // benchmarkName returns full name of benchmark including procs suffix. func benchmarkName(name string, n int) string { if n != 1 { return fmt.Sprintf("%s-%d", name, n) } return name } type benchContext struct { match *matcher maxLen int // The largest recorded benchmark name. extLen int // Maximum extension length. } // An internal function but exported because it is cross-package; part of the implementation // of the "go test" command. func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) { runBenchmarksInternal(matchString, benchmarks) } func runBenchmarksInternal(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) bool { // If no flag was specified, don't run benchmarks. if len(*matchBenchmarks) == 0 { return true } // Collect matching benchmarks and determine longest name. maxprocs := 1 for _, procs := range cpuList { if procs > maxprocs { maxprocs = procs } } ctx := &benchContext{ match: newMatcher(matchString, *matchBenchmarks, "-test.bench"), extLen: len(benchmarkName("", maxprocs)), } var bs []InternalBenchmark for _, Benchmark := range benchmarks { if _, matched := ctx.match.fullName(nil, Benchmark.Name); matched { bs = append(bs, Benchmark) benchName := benchmarkName(Benchmark.Name, maxprocs) if l := len(benchName) + ctx.extLen + 1; l > ctx.maxLen { ctx.maxLen = l } } } main := &B{ common: common{name: "Main"}, benchFunc: func(b *B) { for _, Benchmark := range bs { b.runBench(Benchmark.Name, Benchmark.F) } }, benchTime: *benchTime, context: ctx, } main.runN(1) return !main.failed } // processBench runs bench b for the configured CPU counts and prints the results. func (ctx *benchContext) processBench(b *B) { for _, procs := range cpuList { runtime.GOMAXPROCS(procs) benchName := benchmarkName(b.name, procs) b := &B{ common: common{ signal: make(chan bool), name: benchName, }, benchFunc: b.benchFunc, benchTime: b.benchTime, } fmt.Printf("%-*s\t", ctx.maxLen, benchName) r := b.doBench() if b.failed { // The output could be very long here, but probably isn't. // We print it all, regardless, because we don't want to trim the reason // the benchmark failed. fmt.Printf("--- FAIL: %s\n%s", benchName, b.output) continue } results := r.String() if *benchmarkMemory || b.showAllocResult { results += "\t" + r.MemString() } fmt.Println(results) // Unlike with tests, we ignore the -chatty flag and always print output for // benchmarks since the output generation time will skew the results. if len(b.output) > 0 { b.trimOutput() fmt.Printf("--- BENCH: %s\n%s", benchName, b.output) } if p := runtime.GOMAXPROCS(-1); p != procs { fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p) } } } // runBench benchmarks f as a subbenchmark with the given name. It reports // whether there were any failures. // // A subbenchmark is like any other benchmark. A benchmark that calls Run at // least once will not be measured itself. func (b *B) runBench(name string, f func(b *B)) bool { // Since b has subbenchmarks, we will no longer run it as a benchmark itself. // Release the lock and acquire it on exit to ensure locks stay paired. b.hasSub = true benchmarkLock.Unlock() defer benchmarkLock.Lock() benchName, ok := b.name, true if b.context != nil { benchName, ok = b.context.match.fullName(&b.common, name) } if !ok { return true } sub := &B{ common: common{ signal: make(chan bool), name: benchName, parent: &b.common, level: b.level + 1, }, benchFunc: f, benchTime: b.benchTime, context: b.context, } if sub.probe(); !sub.hasSub { b.add(sub.run()) } return !sub.failed } // add simulates running benchmarks in sequence in a single iteration. It is // used to give some meaningful results in case func Benchmark is used in // combination with Run. func (b *B) add(other BenchmarkResult) { r := &b.result // The aggregated BenchmarkResults resemble running all subbenchmarks as // in sequence in a single benchmark. r.N = 1 r.T += time.Duration(other.NsPerOp()) if other.Bytes == 0 { // Summing Bytes is meaningless in aggregate if not all subbenchmarks // set it. b.missingBytes = true r.Bytes = 0 } if !b.missingBytes { r.Bytes += other.Bytes } r.MemAllocs += uint64(other.AllocsPerOp()) r.MemBytes += uint64(other.AllocedBytesPerOp()) } // trimOutput shortens the output from a benchmark, which can be very long. func (b *B) trimOutput() { // The output is likely to appear multiple times because the benchmark // is run multiple times, but at least it will be seen. This is not a big deal // because benchmarks rarely print, but just in case, we trim it if it's too long. const maxNewlines = 10 for nlCount, j := 0, 0; j < len(b.output); j++ { if b.output[j] == '\n' { nlCount++ if nlCount >= maxNewlines { b.output = append(b.output[:j], "\n\t... [output truncated]\n"...) break } } } } // A PB is used by RunParallel for running parallel benchmarks. type PB struct { globalN *uint64 // shared between all worker goroutines iteration counter grain uint64 // acquire that many iterations from globalN at once cache uint64 // local cache of acquired iterations bN uint64 // total number of iterations to execute (b.N) } // Next reports whether there are more iterations to execute. func (pb *PB) Next() bool { if pb.cache == 0 { n := atomic.AddUint64(pb.globalN, pb.grain) if n <= pb.bN { pb.cache = pb.grain } else if n < pb.bN+pb.grain { pb.cache = pb.bN + pb.grain - n } else { return false } } pb.cache-- return true } // RunParallel runs a benchmark in parallel. // It creates multiple goroutines and distributes b.N iterations among them. // The number of goroutines defaults to GOMAXPROCS. To increase parallelism for // non-CPU-bound benchmarks, call SetParallelism before RunParallel. // RunParallel is usually used with the go test -cpu flag. // // The body function will be run in each goroutine. It should set up any // goroutine-local state and then iterate until pb.Next returns false. // It should not use the StartTimer, StopTimer, or ResetTimer functions, // because they have global effect. It should also not call Run. func (b *B) RunParallel(body func(*PB)) { if b.N == 0 { return // Nothing to do when probing. } // Calculate grain size as number of iterations that take ~100µs. // 100µs is enough to amortize the overhead and provide sufficient // dynamic load balancing. grain := uint64(0) if b.previousN > 0 && b.previousDuration > 0 { grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration) } if grain < 1 { grain = 1 } // We expect the inner loop and function call to take at least 10ns, // so do not do more than 100µs/10ns=1e4 iterations. if grain > 1e4 { grain = 1e4 } n := uint64(0) numProcs := b.parallelism * runtime.GOMAXPROCS(0) var wg sync.WaitGroup wg.Add(numProcs) for p := 0; p < numProcs; p++ { go func() { defer wg.Done() pb := &PB{ globalN: &n, grain: grain, bN: uint64(b.N), } body(pb) }() } wg.Wait() if n <= uint64(b.N) && !b.Failed() { b.Fatal("RunParallel: body exited without pb.Next() == false") } } // SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS. // There is usually no need to call SetParallelism for CPU-bound benchmarks. // If p is less than 1, this call will have no effect. func (b *B) SetParallelism(p int) { if p >= 1 { b.parallelism = p } } // Benchmark benchmarks a single function. Useful for creating // custom benchmarks that do not use the "go test" command. func Benchmark(f func(b *B)) BenchmarkResult { b := &B{ common: common{ signal: make(chan bool), }, benchFunc: f, benchTime: *benchTime, } return b.run() }