// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: type and heap bitmaps. // // Stack, data, and bss bitmaps // // Stack frames and global variables in the data and bss sections are // described by bitmaps with 1 bit per pointer-sized word. A "1" bit // means the word is a live pointer to be visited by the GC (referred to // as "pointer"). A "0" bit means the word should be ignored by GC // (referred to as "scalar", though it could be a dead pointer value). // // Heap bitmap // // The heap bitmap comprises 1 bit for each pointer-sized word in the heap, // recording whether a pointer is stored in that word or not. This bitmap // is stored in the heapArena metadata backing each heap arena. // That is, if ha is the heapArena for the arena starting at "start", // then ha.bitmap[0] holds the 64 bits for the 64 words "start" // through start+63*ptrSize, ha.bitmap[1] holds the entries for // start+64*ptrSize through start+127*ptrSize, and so on. // Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents // the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc. // (For 32-bit platforms, s/64/32/.) // // We also keep a noMorePtrs bitmap which allows us to stop scanning // the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1 // is 1, then the object containing the last word described by ha.bitmap[8*i+j] // has no more pointers beyond those described by ha.bitmap[8*i+j]. // If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and // beyond must all be zero until the start of the next object. // // The bitmap for noscan spans is set to all zero at span allocation time. // // The bitmap for unallocated objects in scannable spans is not maintained // (can be junk). package runtime import ( "internal/goarch" "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // addb returns the byte pointer p+n. // //go:nowritebarrier //go:nosplit func addb(p *byte, n uintptr) *byte { // Note: wrote out full expression instead of calling add(p, n) // to reduce the number of temporaries generated by the // compiler for this trivial expression during inlining. return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) } // subtractb returns the byte pointer p-n. // //go:nowritebarrier //go:nosplit func subtractb(p *byte, n uintptr) *byte { // Note: wrote out full expression instead of calling add(p, -n) // to reduce the number of temporaries generated by the // compiler for this trivial expression during inlining. return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) } // add1 returns the byte pointer p+1. // //go:nowritebarrier //go:nosplit func add1(p *byte) *byte { // Note: wrote out full expression instead of calling addb(p, 1) // to reduce the number of temporaries generated by the // compiler for this trivial expression during inlining. return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) } // subtract1 returns the byte pointer p-1. // // nosplit because it is used during write barriers and must not be preempted. // //go:nowritebarrier //go:nosplit func subtract1(p *byte) *byte { // Note: wrote out full expression instead of calling subtractb(p, 1) // to reduce the number of temporaries generated by the // compiler for this trivial expression during inlining. return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) } // markBits provides access to the mark bit for an object in the heap. // bytep points to the byte holding the mark bit. // mask is a byte with a single bit set that can be &ed with *bytep // to see if the bit has been set. // *m.byte&m.mask != 0 indicates the mark bit is set. // index can be used along with span information to generate // the address of the object in the heap. // We maintain one set of mark bits for allocation and one for // marking purposes. type markBits struct { bytep *uint8 mask uint8 index uintptr } //go:nosplit func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { bytep, mask := s.allocBits.bitp(allocBitIndex) return markBits{bytep, mask, allocBitIndex} } // refillAllocCache takes 8 bytes s.allocBits starting at whichByte // and negates them so that ctz (count trailing zeros) instructions // can be used. It then places these 8 bytes into the cached 64 bit // s.allocCache. func (s *mspan) refillAllocCache(whichByte uintptr) { bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte))) aCache := uint64(0) aCache |= uint64(bytes[0]) aCache |= uint64(bytes[1]) << (1 * 8) aCache |= uint64(bytes[2]) << (2 * 8) aCache |= uint64(bytes[3]) << (3 * 8) aCache |= uint64(bytes[4]) << (4 * 8) aCache |= uint64(bytes[5]) << (5 * 8) aCache |= uint64(bytes[6]) << (6 * 8) aCache |= uint64(bytes[7]) << (7 * 8) s.allocCache = ^aCache } // nextFreeIndex returns the index of the next free object in s at // or after s.freeindex. // There are hardware instructions that can be used to make this // faster if profiling warrants it. func (s *mspan) nextFreeIndex() uintptr { sfreeindex := s.freeindex snelems := s.nelems if sfreeindex == snelems { return sfreeindex } if sfreeindex > snelems { throw("s.freeindex > s.nelems") } aCache := s.allocCache bitIndex := sys.TrailingZeros64(aCache) for bitIndex == 64 { // Move index to start of next cached bits. sfreeindex = (sfreeindex + 64) &^ (64 - 1) if sfreeindex >= snelems { s.freeindex = snelems return snelems } whichByte := sfreeindex / 8 // Refill s.allocCache with the next 64 alloc bits. s.refillAllocCache(whichByte) aCache = s.allocCache bitIndex = sys.TrailingZeros64(aCache) // nothing available in cached bits // grab the next 8 bytes and try again. } result := sfreeindex + uintptr(bitIndex) if result >= snelems { s.freeindex = snelems return snelems } s.allocCache >>= uint(bitIndex + 1) sfreeindex = result + 1 if sfreeindex%64 == 0 && sfreeindex != snelems { // We just incremented s.freeindex so it isn't 0. // As each 1 in s.allocCache was encountered and used for allocation // it was shifted away. At this point s.allocCache contains all 0s. // Refill s.allocCache so that it corresponds // to the bits at s.allocBits starting at s.freeindex. whichByte := sfreeindex / 8 s.refillAllocCache(whichByte) } s.freeindex = sfreeindex return result } // isFree reports whether the index'th object in s is unallocated. // // The caller must ensure s.state is mSpanInUse, and there must have // been no preemption points since ensuring this (which could allow a // GC transition, which would allow the state to change). func (s *mspan) isFree(index uintptr) bool { if index < s.freeIndexForScan { return false } bytep, mask := s.allocBits.bitp(index) return *bytep&mask == 0 } // divideByElemSize returns n/s.elemsize. // n must be within [0, s.npages*_PageSize), // or may be exactly s.npages*_PageSize // if s.elemsize is from sizeclasses.go. func (s *mspan) divideByElemSize(n uintptr) uintptr { const doubleCheck = false // See explanation in mksizeclasses.go's computeDivMagic. q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) if doubleCheck && q != n/s.elemsize { println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) throw("bad magic division") } return q } func (s *mspan) objIndex(p uintptr) uintptr { return s.divideByElemSize(p - s.base()) } func markBitsForAddr(p uintptr) markBits { s := spanOf(p) objIndex := s.objIndex(p) return s.markBitsForIndex(objIndex) } func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { bytep, mask := s.gcmarkBits.bitp(objIndex) return markBits{bytep, mask, objIndex} } func (s *mspan) markBitsForBase() markBits { return markBits{&s.gcmarkBits.x, uint8(1), 0} } // isMarked reports whether mark bit m is set. func (m markBits) isMarked() bool { return *m.bytep&m.mask != 0 } // setMarked sets the marked bit in the markbits, atomically. func (m markBits) setMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.Or8(m.bytep, m.mask) } // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. func (m markBits) setMarkedNonAtomic() { *m.bytep |= m.mask } // clearMarked clears the marked bit in the markbits, atomically. func (m markBits) clearMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.And8(m.bytep, ^m.mask) } // markBitsForSpan returns the markBits for the span base address base. func markBitsForSpan(base uintptr) (mbits markBits) { mbits = markBitsForAddr(base) if mbits.mask != 1 { throw("markBitsForSpan: unaligned start") } return mbits } // advance advances the markBits to the next object in the span. func (m *markBits) advance() { if m.mask == 1<<7 { m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) m.mask = 1 } else { m.mask = m.mask << 1 } m.index++ } // clobberdeadPtr is a special value that is used by the compiler to // clobber dead stack slots, when -clobberdead flag is set. const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) // badPointer throws bad pointer in heap panic. func badPointer(s *mspan, p, refBase, refOff uintptr) { // Typically this indicates an incorrect use // of unsafe or cgo to store a bad pointer in // the Go heap. It may also indicate a runtime // bug. // // TODO(austin): We could be more aggressive // and detect pointers to unallocated objects // in allocated spans. printlock() print("runtime: pointer ", hex(p)) if s != nil { state := s.state.get() if state != mSpanInUse { print(" to unallocated span") } else { print(" to unused region of span") } print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) } print("\n") if refBase != 0 { print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") gcDumpObject("object", refBase, refOff) } getg().m.traceback = 2 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") } // findObject returns the base address for the heap object containing // the address p, the object's span, and the index of the object in s. // If p does not point into a heap object, it returns base == 0. // // If p points is an invalid heap pointer and debug.invalidptr != 0, // findObject panics. // // refBase and refOff optionally give the base address of the object // in which the pointer p was found and the byte offset at which it // was found. These are used for error reporting. // // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. // Since p is a uintptr, it would not be adjusted if the stack were to move. // //go:nosplit func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { s = spanOf(p) // If s is nil, the virtual address has never been part of the heap. // This pointer may be to some mmap'd region, so we allow it. if s == nil { if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 { // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now, // as they are the only platform where compiler's clobberdead mode is // implemented. On these platforms clobberdeadPtr cannot be a valid address. badPointer(s, p, refBase, refOff) } return } // If p is a bad pointer, it may not be in s's bounds. // // Check s.state to synchronize with span initialization // before checking other fields. See also spanOfHeap. if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { // Pointers into stacks are also ok, the runtime manages these explicitly. if state == mSpanManual { return } // The following ensures that we are rigorous about what data // structures hold valid pointers. if debug.invalidptr != 0 { badPointer(s, p, refBase, refOff) } return } objIndex = s.objIndex(p) base = s.base() + objIndex*s.elemsize return } // reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok. // //go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr func reflect_verifyNotInHeapPtr(p uintptr) bool { // Conversion to a pointer is ok as long as findObject above does not call badPointer. // Since we're already promised that p doesn't point into the heap, just disallow heap // pointers and the special clobbered pointer. return spanOf(p) == nil && p != clobberdeadPtr } const ptrBits = 8 * goarch.PtrSize // heapBits provides access to the bitmap bits for a single heap word. // The methods on heapBits take value receivers so that the compiler // can more easily inline calls to those methods and registerize the // struct fields independently. type heapBits struct { // heapBits will report on pointers in the range [addr,addr+size). // The low bit of mask contains the pointerness of the word at addr // (assuming valid>0). addr, size uintptr // The next few pointer bits representing words starting at addr. // Those bits already returned by next() are zeroed. mask uintptr // Number of bits in mask that are valid. mask is always less than 1<> off valid := ptrBits - off // Process depending on where the object ends. nptr := size / goarch.PtrSize if nptr < valid { // Bits for this object end before the end of this bitmap word. // Squash bits for the following objects. mask &= 1<<(nptr&(ptrBits-1)) - 1 valid = nptr } else if nptr == valid { // Bits for this object end at exactly the end of this bitmap word. // All good. } else { // Bits for this object extend into the next bitmap word. See if there // may be any pointers recorded there. if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 { // No more pointers in this object after this bitmap word. // Update size so we know not to look there. size = valid * goarch.PtrSize } } return heapBits{addr: addr, size: size, mask: mask, valid: valid} } // Returns the (absolute) address of the next known pointer and // a heapBits iterator representing any remaining pointers. // If there are no more pointers, returns address 0. // Note that next does not modify h. The caller must record the result. // // nosplit because it is used during write barriers and must not be preempted. // //go:nosplit func (h heapBits) next() (heapBits, uintptr) { for { if h.mask != 0 { var i int if goarch.PtrSize == 8 { i = sys.TrailingZeros64(uint64(h.mask)) } else { i = sys.TrailingZeros32(uint32(h.mask)) } h.mask ^= uintptr(1) << (i & (ptrBits - 1)) return h, h.addr + uintptr(i)*goarch.PtrSize } // Skip words that we've already processed. h.addr += h.valid * goarch.PtrSize h.size -= h.valid * goarch.PtrSize if h.size == 0 { return h, 0 // no more pointers } // Grab more bits and try again. h = heapBitsForAddr(h.addr, h.size) } } // nextFast is like next, but can return 0 even when there are more pointers // to be found. Callers should call next if nextFast returns 0 as its second // return value. // // if addr, h = h.nextFast(); addr == 0 { // if addr, h = h.next(); addr == 0 { // ... no more pointers ... // } // } // ... process pointer at addr ... // // nextFast is designed to be inlineable. // //go:nosplit func (h heapBits) nextFast() (heapBits, uintptr) { // TESTQ/JEQ if h.mask == 0 { return h, 0 } // BSFQ var i int if goarch.PtrSize == 8 { i = sys.TrailingZeros64(uint64(h.mask)) } else { i = sys.TrailingZeros32(uint32(h.mask)) } // BTCQ h.mask ^= uintptr(1) << (i & (ptrBits - 1)) // LEAQ (XX)(XX*8) return h, h.addr + uintptr(i)*goarch.PtrSize } // bulkBarrierPreWrite executes a write barrier // for every pointer slot in the memory range [src, src+size), // using pointer/scalar information from [dst, dst+size). // This executes the write barriers necessary before a memmove. // src, dst, and size must be pointer-aligned. // The range [dst, dst+size) must lie within a single object. // It does not perform the actual writes. // // As a special case, src == 0 indicates that this is being used for a // memclr. bulkBarrierPreWrite will pass 0 for the src of each write // barrier. // // Callers should call bulkBarrierPreWrite immediately before // calling memmove(dst, src, size). This function is marked nosplit // to avoid being preempted; the GC must not stop the goroutine // between the memmove and the execution of the barriers. // The caller is also responsible for cgo pointer checks if this // may be writing Go pointers into non-Go memory. // // The pointer bitmap is not maintained for allocations containing // no pointers at all; any caller of bulkBarrierPreWrite must first // make sure the underlying allocation contains pointers, usually // by checking typ.PtrBytes. // // Callers must perform cgo checks if goexperiment.CgoCheck2. // //go:nosplit func bulkBarrierPreWrite(dst, src, size uintptr) { if (dst|src|size)&(goarch.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.needed { return } if s := spanOf(dst); s == nil { // If dst is a global, use the data or BSS bitmaps to // execute write barriers. for _, datap := range activeModules() { if datap.data <= dst && dst < datap.edata { bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) return } } for _, datap := range activeModules() { if datap.bss <= dst && dst < datap.ebss { bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) return } } return } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { // dst was heap memory at some point, but isn't now. // It can't be a global. It must be either our stack, // or in the case of direct channel sends, it could be // another stack. Either way, no need for barriers. // This will also catch if dst is in a freed span, // though that should never have. return } buf := &getg().m.p.ptr().wbBuf h := heapBitsForAddr(dst, size) if src == 0 { for { var addr uintptr if h, addr = h.next(); addr == 0 { break } dstx := (*uintptr)(unsafe.Pointer(addr)) p := buf.get1() p[0] = *dstx } } else { for { var addr uintptr if h, addr = h.next(); addr == 0 { break } dstx := (*uintptr)(unsafe.Pointer(addr)) srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) p := buf.get2() p[0] = *dstx p[1] = *srcx } } } // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but // does not execute write barriers for [dst, dst+size). // // In addition to the requirements of bulkBarrierPreWrite // callers need to ensure [dst, dst+size) is zeroed. // // This is used for special cases where e.g. dst was just // created and zeroed with malloc. // //go:nosplit func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) { if (dst|src|size)&(goarch.PtrSize-1) != 0 { throw("bulkBarrierPreWrite: unaligned arguments") } if !writeBarrier.needed { return } buf := &getg().m.p.ptr().wbBuf h := heapBitsForAddr(dst, size) for { var addr uintptr if h, addr = h.next(); addr == 0 { break } srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) p := buf.get1() p[0] = *srcx } } // bulkBarrierBitmap executes write barriers for copying from [src, // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is // assumed to start maskOffset bytes into the data covered by the // bitmap in bits (which may not be a multiple of 8). // // This is used by bulkBarrierPreWrite for writes to data and BSS. // //go:nosplit func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { word := maskOffset / goarch.PtrSize bits = addb(bits, word/8) mask := uint8(1) << (word % 8) buf := &getg().m.p.ptr().wbBuf for i := uintptr(0); i < size; i += goarch.PtrSize { if mask == 0 { bits = addb(bits, 1) if *bits == 0 { // Skip 8 words. i += 7 * goarch.PtrSize continue } mask = 1 } if *bits&mask != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) if src == 0 { p := buf.get1() p[0] = *dstx } else { srcx := (*uintptr)(unsafe.Pointer(src + i)) p := buf.get2() p[0] = *dstx p[1] = *srcx } } mask <<= 1 } } // typeBitsBulkBarrier executes a write barrier for every // pointer that would be copied from [src, src+size) to [dst, // dst+size) by a memmove using the type bitmap to locate those // pointer slots. // // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). // dst, src, and size must be pointer-aligned. // The type typ must have a plain bitmap, not a GC program. // The only use of this function is in channel sends, and the // 64 kB channel element limit takes care of this for us. // // Must not be preempted because it typically runs right before memmove, // and the GC must observe them as an atomic action. // // Callers must perform cgo checks if goexperiment.CgoCheck2. // //go:nosplit func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { if typ == nil { throw("runtime: typeBitsBulkBarrier without type") } if typ.Size_ != size { println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.Size_, " but memory size", size) throw("runtime: invalid typeBitsBulkBarrier") } if typ.Kind_&kindGCProg != 0 { println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") throw("runtime: invalid typeBitsBulkBarrier") } if !writeBarrier.needed { return } ptrmask := typ.GCData buf := &getg().m.p.ptr().wbBuf var bits uint32 for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize { if i&(goarch.PtrSize*8-1) == 0 { bits = uint32(*ptrmask) ptrmask = addb(ptrmask, 1) } else { bits = bits >> 1 } if bits&1 != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) srcx := (*uintptr)(unsafe.Pointer(src + i)) p := buf.get2() p[0] = *dstx p[1] = *srcx } } } // initHeapBits initializes the heap bitmap for a span. // If this is a span of single pointer allocations, it initializes all // words to pointer. If force is true, clears all bits. func (s *mspan) initHeapBits(forceClear bool) { if forceClear || s.spanclass.noscan() { // Set all the pointer bits to zero. We do this once // when the span is allocated so we don't have to do it // for each object allocation. base := s.base() size := s.npages * pageSize h := writeHeapBitsForAddr(base) h.flush(base, size) return } isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize if !isPtrs { return // nothing to do } h := writeHeapBitsForAddr(s.base()) size := s.npages * pageSize nptrs := size / goarch.PtrSize for i := uintptr(0); i < nptrs; i += ptrBits { h = h.write(^uintptr(0), ptrBits) } h.flush(s.base(), size) } // countAlloc returns the number of objects allocated in span s by // scanning the allocation bitmap. func (s *mspan) countAlloc() int { count := 0 bytes := divRoundUp(s.nelems, 8) // Iterate over each 8-byte chunk and count allocations // with an intrinsic. Note that newMarkBits guarantees that // gcmarkBits will be 8-byte aligned, so we don't have to // worry about edge cases, irrelevant bits will simply be zero. for i := uintptr(0); i < bytes; i += 8 { // Extract 64 bits from the byte pointer and get a OnesCount. // Note that the unsafe cast here doesn't preserve endianness, // but that's OK. We only care about how many bits are 1, not // about the order we discover them in. mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) count += sys.OnesCount64(mrkBits) } return count } type writeHeapBits struct { addr uintptr // address that the low bit of mask represents the pointer state of. mask uintptr // some pointer bits starting at the address addr. valid uintptr // number of bits in buf that are valid (including low) low uintptr // number of low-order bits to not overwrite } func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) { // We start writing bits maybe in the middle of a heap bitmap word. // Remember how many bits into the word we started, so we can be sure // not to overwrite the previous bits. h.low = addr / goarch.PtrSize % ptrBits // round down to heap word that starts the bitmap word. h.addr = addr - h.low*goarch.PtrSize // We don't have any bits yet. h.mask = 0 h.valid = h.low return } // write appends the pointerness of the next valid pointer slots // using the low valid bits of bits. 1=pointer, 0=scalar. func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits { if h.valid+valid <= ptrBits { // Fast path - just accumulate the bits. h.mask |= bits << h.valid h.valid += valid return h } // Too many bits to fit in this word. Write the current word // out and move on to the next word. data := h.mask | bits<> (ptrBits - h.valid) // leftover for next word h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them // Flush mask to the memory bitmap. // TODO: figure out how to cache arena lookup. ai := arenaIndex(h.addr) ha := mheap_.arenas[ai.l1()][ai.l2()] idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords m := uintptr(1)< ptrBits { h = h.write(0, ptrBits) words -= ptrBits } return h.write(0, words) } // Flush the bits that have been written, and add zeros as needed // to cover the full object [addr, addr+size). func (h writeHeapBits) flush(addr, size uintptr) { // zeros counts the number of bits needed to represent the object minus the // number of bits we've already written. This is the number of 0 bits // that need to be added. zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid // Add zero bits up to the bitmap word boundary if zeros > 0 { z := ptrBits - h.valid if z > zeros { z = zeros } h.valid += z zeros -= z } // Find word in bitmap that we're going to write. ai := arenaIndex(h.addr) ha := mheap_.arenas[ai.l1()][ai.l2()] idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords // Write remaining bits. if h.valid != h.low { m := uintptr(1)< 8 { h = h.write(uintptr(*p), 8) p = add1(p) j -= 8 } h = h.write(uintptr(*p), j) if i+typ.Size_ == dataSize { break // no padding after last element } // Pad with zeros to the start of the next element. h = h.pad(typ.Size_ - n*goarch.PtrSize) } h.flush(x, size) // Erase the expanded GC program. memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8) return } // Note about sizes: // // typ.Size is the number of words in the object, // and typ.PtrBytes is the number of words in the prefix // of the object that contains pointers. That is, the final // typ.Size - typ.PtrBytes words contain no pointers. // This allows optimization of a common pattern where // an object has a small header followed by a large scalar // buffer. If we know the pointers are over, we don't have // to scan the buffer's heap bitmap at all. // The 1-bit ptrmasks are sized to contain only bits for // the typ.PtrBytes prefix, zero padded out to a full byte // of bitmap. If there is more room in the allocated object, // that space is pointerless. The noMorePtrs bitmap will prevent // scanning large pointerless tails of an object. // // Replicated copies are not as nice: if there is an array of // objects with scalar tails, all but the last tail does have to // be initialized, because there is no way to say "skip forward". ptrs := typ.PtrBytes / goarch.PtrSize if typ.Size_ == dataSize { // Single element if ptrs <= ptrBits { // Single small element m := readUintptr(typ.GCData) h = h.write(m, ptrs) } else { // Single large element p := typ.GCData for { h = h.write(readUintptr(p), ptrBits) p = addb(p, ptrBits/8) ptrs -= ptrBits if ptrs <= ptrBits { break } } m := readUintptr(p) h = h.write(m, ptrs) } } else { // Repeated element words := typ.Size_ / goarch.PtrSize // total words, including scalar tail if words <= ptrBits { // Repeated small element n := dataSize / typ.Size_ m := readUintptr(typ.GCData) // Make larger unit to repeat for words <= ptrBits/2 { if n&1 != 0 { h = h.write(m, words) } n /= 2 m |= m << words ptrs += words words *= 2 if n == 1 { break } } for n > 1 { h = h.write(m, words) n-- } h = h.write(m, ptrs) } else { // Repeated large element for i := uintptr(0); true; i += typ.Size_ { p := typ.GCData j := ptrs for j > ptrBits { h = h.write(readUintptr(p), ptrBits) p = addb(p, ptrBits/8) j -= ptrBits } m := readUintptr(p) h = h.write(m, j) if i+typ.Size_ == dataSize { break // don't need the trailing nonptr bits on the last element. } // Pad with zeros to the start of the next element. h = h.pad(typ.Size_ - typ.PtrBytes) } } } h.flush(x, size) if doubleCheck { h := heapBitsForAddr(x, size) for i := uintptr(0); i < size; i += goarch.PtrSize { // Compute the pointer bit we want at offset i. want := false if i < dataSize { off := i % typ.Size_ if off < typ.PtrBytes { j := off / goarch.PtrSize want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 } } if want { var addr uintptr h, addr = h.next() if addr != x+i { throw("heapBitsSetType: pointer entry not correct") } } } if _, addr := h.next(); addr != 0 { throw("heapBitsSetType: extra pointer") } } } var debugPtrmask struct { lock mutex data *byte } // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. // size the size of the region described by prog, in bytes. // The resulting bitvector will have no more than size/goarch.PtrSize bits. func progToPointerMask(prog *byte, size uintptr) bitvector { n := (size/goarch.PtrSize + 7) / 8 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] x[len(x)-1] = 0xa1 // overflow check sentinel n = runGCProg(prog, &x[0]) if x[len(x)-1] != 0xa1 { throw("progToPointerMask: overflow") } return bitvector{int32(n), &x[0]} } // Packed GC pointer bitmaps, aka GC programs. // // For large types containing arrays, the type information has a // natural repetition that can be encoded to save space in the // binary and in the memory representation of the type information. // // The encoding is a simple Lempel-Ziv style bytecode machine // with the following instructions: // // 00000000: stop // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes // 10000000 n c: repeat the previous n bits c times; n, c are varints // 1nnnnnnn c: repeat the previous n bits c times; c is a varint // runGCProg returns the number of 1-bit entries written to memory. func runGCProg(prog, dst *byte) uintptr { dstStart := dst // Bits waiting to be written to memory. var bits uintptr var nbits uintptr p := prog Run: for { // Flush accumulated full bytes. // The rest of the loop assumes that nbits <= 7. for ; nbits >= 8; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Process one instruction. inst := uintptr(*p) p = add1(p) n := inst & 0x7F if inst&0x80 == 0 { // Literal bits; n == 0 means end of program. if n == 0 { // Program is over. break Run } nbyte := n / 8 for i := uintptr(0); i < nbyte; i++ { bits |= uintptr(*p) << nbits p = add1(p) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } if n %= 8; n > 0 { bits |= uintptr(*p) << nbits p = add1(p) nbits += n } continue Run } // Repeat. If n == 0, it is encoded in a varint in the next bytes. if n == 0 { for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) n |= (x & 0x7F) << off if x&0x80 == 0 { break } } } // Count is encoded in a varint in the next bytes. c := uintptr(0) for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) c |= (x & 0x7F) << off if x&0x80 == 0 { break } } c *= n // now total number of bits to copy // If the number of bits being repeated is small, load them // into a register and use that register for the entire loop // instead of repeatedly reading from memory. // Handling fewer than 8 bits here makes the general loop simpler. // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add // the pattern to a bit buffer holding at most 7 bits (a partial byte) // it will not overflow. src := dst const maxBits = goarch.PtrSize*8 - 7 if n <= maxBits { // Start with bits in output buffer. pattern := bits npattern := nbits // If we need more bits, fetch them from memory. src = subtract1(src) for npattern < n { pattern <<= 8 pattern |= uintptr(*src) src = subtract1(src) npattern += 8 } // We started with the whole bit output buffer, // and then we loaded bits from whole bytes. // Either way, we might now have too many instead of too few. // Discard the extra. if npattern > n { pattern >>= npattern - n npattern = n } // Replicate pattern to at most maxBits. if npattern == 1 { // One bit being repeated. // If the bit is 1, make the pattern all 1s. // If the bit is 0, the pattern is already all 0s, // but we can claim that the number of bits // in the word is equal to the number we need (c), // because right shift of bits will zero fill. if pattern == 1 { pattern = 1<8 bits, there will be full bytes to flush // on each iteration. for ; c >= npattern; c -= npattern { bits |= pattern << nbits nbits += npattern for nbits >= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 nbits -= 8 } } // Add final fragment to bit buffer. if c > 0 { pattern &= 1< nbits because n > maxBits and nbits <= 7 // Leading src fragment. src = subtractb(src, (off+7)/8) if frag := off & 7; frag != 0 { bits |= uintptr(*src) >> (8 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 8; i > 0; i-- { bits |= uintptr(*src) << nbits src = add1(src) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Final src fragment. if c %= 8; c > 0 { bits |= (uintptr(*src) & (1< 0; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } return totalBits } // materializeGCProg allocates space for the (1-bit) pointer bitmask // for an object of size ptrdata. Then it fills that space with the // pointer bitmask specified by the program prog. // The bitmask starts at s.startAddr. // The result must be deallocated with dematerializeGCProg. func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { // Each word of ptrdata needs one bit in the bitmap. bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize) // Compute the number of pages needed for bitmapBytes. pages := divRoundUp(bitmapBytes, pageSize) s := mheap_.allocManual(pages, spanAllocPtrScalarBits) runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr))) return s } func dematerializeGCProg(s *mspan) { mheap_.freeManual(s, spanAllocPtrScalarBits) } func dumpGCProg(p *byte) { nptr := 0 for { x := *p p = add1(p) if x == 0 { print("\t", nptr, " end\n") break } if x&0x80 == 0 { print("\t", nptr, " lit ", x, ":") n := int(x+7) / 8 for i := 0; i < n; i++ { print(" ", hex(*p)) p = add1(p) } print("\n") nptr += int(x) } else { nbit := int(x &^ 0x80) if nbit == 0 { for nb := uint(0); ; nb += 7 { x := *p p = add1(p) nbit |= int(x&0x7f) << nb if x&0x80 == 0 { break } } } count := 0 for nb := uint(0); ; nb += 7 { x := *p p = add1(p) count |= int(x&0x7f) << nb if x&0x80 == 0 { break } } print("\t", nptr, " repeat ", nbit, " × ", count, "\n") nptr += nbit * count } } } // Testing. // reflect_gcbits returns the GC type info for x, for testing. // The result is the bitmap entries (0 or 1), one entry per byte. // //go:linkname reflect_gcbits reflect.gcbits func reflect_gcbits(x any) []byte { return getgcmask(x) } // Returns GC type info for the pointer stored in ep for testing. // If ep points to the stack, only static live information will be returned // (i.e. not for objects which are only dynamically live stack objects). func getgcmask(ep any) (mask []byte) { e := *efaceOf(&ep) p := e.data t := e._type // data or bss for _, datap := range activeModules() { // data if datap.data <= uintptr(p) && uintptr(p) < datap.edata { bitmap := datap.gcdatamask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - datap.data) / goarch.PtrSize mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } // bss if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { bitmap := datap.gcbssmask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - datap.bss) / goarch.PtrSize mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } } // heap if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { if s.spanclass.noscan() { return nil } n := s.elemsize hbits := heapBitsForAddr(base, n) mask = make([]byte, n/goarch.PtrSize) for { var addr uintptr if hbits, addr = hbits.next(); addr == 0 { break } mask[(addr-base)/goarch.PtrSize] = 1 } // Callers expect this mask to end at the last pointer. for len(mask) > 0 && mask[len(mask)-1] == 0 { mask = mask[:len(mask)-1] } return } // stack if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { found := false var u unwinder for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() { if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp { found = true break } } if found { locals, _, _ := u.frame.getStackMap(nil, false) if locals.n == 0 { return } size := uintptr(locals.n) * goarch.PtrSize n := (*ptrtype)(unsafe.Pointer(t)).elem.Size_ mask = make([]byte, n/goarch.PtrSize) for i := uintptr(0); i < n; i += goarch.PtrSize { off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize mask[i/goarch.PtrSize] = locals.ptrbit(off) } } return } // otherwise, not something the GC knows about. // possibly read-only data, like malloc(0). // must not have pointers return }