// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 // validType verifies that the given type does not "expand" indefinitely // producing a cycle in the type graph. // (Cycles involving alias types, as in "type A = [10]A" are detected // earlier, via the objDecl cycle detection mechanism.) func (check *Checker) validType(typ *Named) { check.validType0(typ, nil, nil, nil) } // validType0 checks if the given type is valid. If typ is a type parameter // its value is looked up in the provided environment. The environment is // nil if typ is not part of (the RHS of) an instantiated type, in that case // any type parameter encountered must be from an enclosing function and can // be ignored. The nest list describes the stack (the "nest in memory") of // types which contain (or embed in the case of interfaces) other types. For // instance, a struct named S which contains a field of named type F contains // (the memory of) F in S, leading to the nest S->F. If a type appears in its // own nest (say S->F->S) we have an invalid recursive type. The path list is // the full path of named types in a cycle, it is only needed for error reporting. func (check *Checker) validType0(typ Type, env *tparamEnv, nest, path []*Named) bool { switch t := typ.(type) { case nil: // We should never see a nil type but be conservative and panic // only in debug mode. if debug { panic("validType0(nil)") } case *Array: return check.validType0(t.elem, env, nest, path) case *Struct: for _, f := range t.fields { if !check.validType0(f.typ, env, nest, path) { return false } } case *Union: for _, t := range t.terms { if !check.validType0(t.typ, env, nest, path) { return false } } case *Interface: for _, etyp := range t.embeddeds { if !check.validType0(etyp, env, nest, path) { return false } } case *Named: // Exit early if we already know t is valid. // This is purely an optimization but it prevents excessive computation // times in pathological cases such as testdata/fixedbugs/issue6977.go. // (Note: The valids map could also be allocated locally, once for each // validType call.) if check.valids.lookup(t) != nil { break } // Don't report a 2nd error if we already know the type is invalid // (e.g., if a cycle was detected earlier, via under). // Note: ensure that t.orig is fully resolved by calling Underlying(). if t.Underlying() == Typ[Invalid] { return false } // If the current type t is also found in nest, (the memory of) t is // embedded in itself, indicating an invalid recursive type. for _, e := range nest { if Identical(e, t) { // t cannot be in an imported package otherwise that package // would have reported a type cycle and couldn't have been // imported in the first place. assert(t.obj.pkg == check.pkg) t.underlying = Typ[Invalid] // t is in the current package (no race possibility) // Find the starting point of the cycle and report it. // Because each type in nest must also appear in path (see invariant below), // type t must be in path since it was found in nest. But not every type in path // is in nest. Specifically t may appear in path with an earlier index than the // index of t in nest. Search again. for start, p := range path { if Identical(p, t) { check.cycleError(makeObjList(path[start:])) return false } } panic("cycle start not found") } } // No cycle was found. Check the RHS of t. // Every type added to nest is also added to path; thus every type that is in nest // must also be in path (invariant). But not every type in path is in nest, since // nest may be pruned (see below, *TypeParam case). if !check.validType0(t.Origin().fromRHS, env.push(t), append(nest, t), append(path, t)) { return false } check.valids.add(t) // t is valid case *TypeParam: // A type parameter stands for the type (argument) it was instantiated with. // Check the corresponding type argument for validity if we have one. if env != nil { if targ := env.tmap[t]; targ != nil { // Type arguments found in targ must be looked // up in the enclosing environment env.link. The // type argument must be valid in the enclosing // type (where the current type was instantiated), // hence we must check targ's validity in the type // nest excluding the current (instantiated) type // (see the example at the end of this file). // For error reporting we keep the full path. return check.validType0(targ, env.link, nest[:len(nest)-1], path) } } } return true } // makeObjList returns the list of type name objects for the given // list of named types. func makeObjList(tlist []*Named) []Object { olist := make([]Object, len(tlist)) for i, t := range tlist { olist[i] = t.obj } return olist } // A tparamEnv provides the environment for looking up the type arguments // with which type parameters for a given instance were instantiated. // If we don't have an instance, the corresponding tparamEnv is nil. type tparamEnv struct { tmap substMap link *tparamEnv } func (env *tparamEnv) push(typ *Named) *tparamEnv { // If typ is not an instantiated type there are no typ-specific // type parameters to look up and we don't need an environment. targs := typ.TypeArgs() if targs == nil { return nil // no instance => nil environment } // Populate tmap: remember the type argument for each type parameter. // We cannot use makeSubstMap because the number of type parameters // and arguments may not match due to errors in the source (too many // or too few type arguments). Populate tmap "manually". tparams := typ.TypeParams() n, m := targs.Len(), tparams.Len() if n > m { n = m // too many targs } tmap := make(substMap, n) for i := 0; i < n; i++ { tmap[tparams.At(i)] = targs.At(i) } return &tparamEnv{tmap: tmap, link: env} } // TODO(gri) Alternative implementation: // We may not need to build a stack of environments to // look up the type arguments for type parameters. The // same information should be available via the path: // We should be able to just walk the path backwards // and find the type arguments in the instance objects. // Here is an example illustrating why we need to exclude the // instantiated type from nest when evaluating the validity of // a type parameter. Given the declarations // // var _ A[A[string]] // // type A[P any] struct { _ B[P] } // type B[P any] struct { _ P } // // we want to determine if the type A[A[string]] is valid. // We start evaluating A[A[string]] outside any type nest: // // A[A[string]] // nest = // path = // // The RHS of A is now evaluated in the A[A[string]] nest: // // struct{_ B[P₁]} // nest = A[A[string]] // path = A[A[string]] // // The struct has a single field of type B[P₁] with which // we continue: // // B[P₁] // nest = A[A[string]] // path = A[A[string]] // // struct{_ P₂} // nest = A[A[string]]->B[P] // path = A[A[string]]->B[P] // // Eventutally we reach the type parameter P of type B (P₂): // // P₂ // nest = A[A[string]]->B[P] // path = A[A[string]]->B[P] // // The type argument for P of B is the type parameter P of A (P₁). // It must be evaluated in the type nest that existed when B was // instantiated: // // P₁ // nest = A[A[string]] <== type nest at B's instantiation time // path = A[A[string]]->B[P] // // If we'd use the current nest it would correspond to the path // which will be wrong as we will see shortly. P's type argument // is A[string], which again must be evaluated in the type nest // that existed when A was instantiated with A[string]. That type // nest is empty: // // A[string] // nest = <== type nest at A's instantiation time // path = A[A[string]]->B[P] // // Evaluation then proceeds as before for A[string]: // // struct{_ B[P₁]} // nest = A[string] // path = A[A[string]]->B[P]->A[string] // // Now we reach B[P] again. If we had not adjusted nest, it would // correspond to path, and we would find B[P] in nest, indicating // a cycle, which would clearly be wrong since there's no cycle in // A[string]: // // B[P₁] // nest = A[string] // path = A[A[string]]->B[P]->A[string] <== path contains B[P]! // // But because we use the correct type nest, evaluation proceeds without // errors and we get the evaluation sequence: // // struct{_ P₂} // nest = A[string]->B[P] // path = A[A[string]]->B[P]->A[string]->B[P] // P₂ // nest = A[string]->B[P] // path = A[A[string]]->B[P]->A[string]->B[P] // P₁ // nest = A[string] // path = A[A[string]]->B[P]->A[string]->B[P] // string // nest = // path = A[A[string]]->B[P]->A[string]->B[P] // // At this point we're done and A[A[string]] and is valid.