// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import "cmd/compile/internal/syntax" // ---------------------------------------------------------------------------- // API // A Signature represents a (non-builtin) function or method type. // The receiver is ignored when comparing signatures for identity. type Signature struct { // We need to keep the scope in Signature (rather than passing it around // and store it in the Func Object) because when type-checking a function // literal we call the general type checker which returns a general Type. // We then unpack the *Signature and use the scope for the literal body. rparams *TypeParamList // receiver type parameters from left to right, or nil tparams *TypeParamList // type parameters from left to right, or nil scope *Scope // function scope for package-local and non-instantiated signatures; nil otherwise recv *Var // nil if not a method params *Tuple // (incoming) parameters from left to right; or nil results *Tuple // (outgoing) results from left to right; or nil variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only) } // NewSignatureType creates a new function type for the given receiver, // receiver type parameters, type parameters, parameters, and results. If // variadic is set, params must hold at least one parameter and the last // parameter must be of unnamed slice type. If recv is non-nil, typeParams must // be empty. If recvTypeParams is non-empty, recv must be non-nil. func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature { if variadic { n := params.Len() if n == 0 { panic("variadic function must have at least one parameter") } if _, ok := params.At(n - 1).typ.(*Slice); !ok { panic("variadic parameter must be of unnamed slice type") } } sig := &Signature{recv: recv, params: params, results: results, variadic: variadic} if len(recvTypeParams) != 0 { if recv == nil { panic("function with receiver type parameters must have a receiver") } sig.rparams = bindTParams(recvTypeParams) } if len(typeParams) != 0 { if recv != nil { panic("function with type parameters cannot have a receiver") } sig.tparams = bindTParams(typeParams) } return sig } // Recv returns the receiver of signature s (if a method), or nil if a // function. It is ignored when comparing signatures for identity. // // For an abstract method, Recv returns the enclosing interface either // as a *Named or an *Interface. Due to embedding, an interface may // contain methods whose receiver type is a different interface. func (s *Signature) Recv() *Var { return s.recv } // TypeParams returns the type parameters of signature s, or nil. func (s *Signature) TypeParams() *TypeParamList { return s.tparams } // SetTypeParams sets the type parameters of signature s. func (s *Signature) SetTypeParams(tparams []*TypeParam) { s.tparams = bindTParams(tparams) } // RecvTypeParams returns the receiver type parameters of signature s, or nil. func (s *Signature) RecvTypeParams() *TypeParamList { return s.rparams } // Params returns the parameters of signature s, or nil. func (s *Signature) Params() *Tuple { return s.params } // Results returns the results of signature s, or nil. func (s *Signature) Results() *Tuple { return s.results } // Variadic reports whether the signature s is variadic. func (s *Signature) Variadic() bool { return s.variadic } func (s *Signature) Underlying() Type { return s } func (s *Signature) String() string { return TypeString(s, nil) } // ---------------------------------------------------------------------------- // Implementation // funcType type-checks a function or method type. func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) { check.openScope(ftyp, "function") check.scope.isFunc = true check.recordScope(ftyp, check.scope) sig.scope = check.scope defer check.closeScope() if recvPar != nil { // collect generic receiver type parameters, if any // - a receiver type parameter is like any other type parameter, except that it is declared implicitly // - the receiver specification acts as local declaration for its type parameters, which may be blank _, rname, rparams := check.unpackRecv(recvPar.Type, true) if len(rparams) > 0 { tparams := make([]*TypeParam, len(rparams)) for i, rparam := range rparams { tparams[i] = check.declareTypeParam(rparam) } sig.rparams = bindTParams(tparams) // Blank identifiers don't get declared, so naive type-checking of the // receiver type expression would fail in Checker.collectParams below, // when Checker.ident cannot resolve the _ to a type. // // Checker.recvTParamMap maps these blank identifiers to their type parameter // types, so that they may be resolved in Checker.ident when they fail // lookup in the scope. for i, p := range rparams { if p.Value == "_" { if check.recvTParamMap == nil { check.recvTParamMap = make(map[*syntax.Name]*TypeParam) } check.recvTParamMap[p] = tparams[i] } } // determine receiver type to get its type parameters // and the respective type parameter bounds var recvTParams []*TypeParam if rname != nil { // recv should be a Named type (otherwise an error is reported elsewhere) // Also: Don't report an error via genericType since it will be reported // again when we type-check the signature. // TODO(gri) maybe the receiver should be marked as invalid instead? if recv, _ := check.genericType(rname, nil).(*Named); recv != nil { recvTParams = recv.TypeParams().list() } } // provide type parameter bounds if len(tparams) == len(recvTParams) { smap := makeRenameMap(recvTParams, tparams) for i, tpar := range tparams { recvTPar := recvTParams[i] check.mono.recordCanon(tpar, recvTPar) // recvTPar.bound is (possibly) parameterized in the context of the // receiver type declaration. Substitute parameters for the current // context. tpar.bound = check.subst(tpar.obj.pos, recvTPar.bound, smap, nil, check.context()) } } else if len(tparams) < len(recvTParams) { // Reporting an error here is a stop-gap measure to avoid crashes in the // compiler when a type parameter/argument cannot be inferred later. It // may lead to follow-on errors (see issues #51339, #51343). // TODO(gri) find a better solution got := measure(len(tparams), "type parameter") check.errorf(recvPar, "got %s, but receiver base type declares %d", got, len(recvTParams)) } } } if tparams != nil { // The parser will complain about invalid type parameters for methods. check.collectTypeParams(&sig.tparams, tparams) } // Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their // declarations and then squash that scope into the parent scope (and report any redeclarations at // that time). scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)") var recvList []*Var // TODO(gri) remove the need for making a list here if recvPar != nil { recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, false) // use rewritten receiver type, if any } params, variadic := check.collectParams(scope, ftyp.ParamList, true) results, _ := check.collectParams(scope, ftyp.ResultList, false) scope.Squash(func(obj, alt Object) { var err error_ err.errorf(obj, "%s redeclared in this block", obj.Name()) err.recordAltDecl(alt) check.report(&err) }) if recvPar != nil { // recv parameter list present (may be empty) // spec: "The receiver is specified via an extra parameter section preceding the // method name. That parameter section must declare a single parameter, the receiver." var recv *Var switch len(recvList) { case 0: // error reported by resolver recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below default: // more than one receiver check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver") fallthrough // continue with first receiver case 1: recv = recvList[0] } sig.recv = recv // Delay validation of receiver type as it may cause premature expansion // of types the receiver type is dependent on (see issues #51232, #51233). check.later(func() { // spec: "The receiver type must be of the form T or *T where T is a type name." rtyp, _ := deref(recv.typ) if rtyp == Typ[Invalid] { return // error was reported before } // spec: "The type denoted by T is called the receiver base type; it must not // be a pointer or interface type and it must be declared in the same package // as the method." switch T := rtyp.(type) { case *Named: // The receiver type may be an instantiated type referred to // by an alias (which cannot have receiver parameters for now). if T.TypeArgs() != nil && sig.RecvTypeParams() == nil { check.errorf(recv, "cannot define new methods on instantiated type %s", rtyp) break } if T.obj.pkg != check.pkg { check.errorf(recv, "cannot define new methods on non-local type %s", rtyp) break } var cause string switch u := T.under().(type) { case *Basic: // unsafe.Pointer is treated like a regular pointer if u.kind == UnsafePointer { cause = "unsafe.Pointer" } case *Pointer, *Interface: cause = "pointer or interface type" case *TypeParam: // The underlying type of a receiver base type cannot be a // type parameter: "type T[P any] P" is not a valid declaration. unreachable() } if cause != "" { check.errorf(recv, "invalid receiver type %s (%s)", rtyp, cause) } case *Basic: check.errorf(recv, "cannot define new methods on non-local type %s", rtyp) default: check.errorf(recv, "invalid receiver type %s", recv.typ) } }).describef(recv, "validate receiver %s", recv) } sig.params = NewTuple(params...) sig.results = NewTuple(results...) sig.variadic = variadic } // collectParams declares the parameters of list in scope and returns the corresponding // variable list. func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, variadicOk bool) (params []*Var, variadic bool) { if list == nil { return } var named, anonymous bool var typ Type var prev syntax.Expr for i, field := range list { ftype := field.Type // type-check type of grouped fields only once if ftype != prev { prev = ftype if t, _ := ftype.(*syntax.DotsType); t != nil { ftype = t.Elem if variadicOk && i == len(list)-1 { variadic = true } else { check.softErrorf(t, "can only use ... with final parameter in list") // ignore ... and continue } } typ = check.varType(ftype) } // The parser ensures that f.Tag is nil and we don't // care if a constructed AST contains a non-nil tag. if field.Name != nil { // named parameter name := field.Name.Value if name == "" { check.error(field.Name, invalidAST+"anonymous parameter") // ok to continue } par := NewParam(field.Name.Pos(), check.pkg, name, typ) check.declare(scope, field.Name, par, scope.pos) params = append(params, par) named = true } else { // anonymous parameter par := NewParam(field.Pos(), check.pkg, "", typ) check.recordImplicit(field, par) params = append(params, par) anonymous = true } } if named && anonymous { check.error(list[0], invalidAST+"list contains both named and anonymous parameters") // ok to continue } // For a variadic function, change the last parameter's type from T to []T. // Since we type-checked T rather than ...T, we also need to retro-actively // record the type for ...T. if variadic { last := params[len(params)-1] last.typ = &Slice{elem: last.typ} check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil) } return }