// Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // A note on line numbers: when working with line numbers, we always use the // binary-visible relative line number. i.e., the line number as adjusted by // //line directives (ctxt.InnermostPos(ir.Node.Pos()).RelLine()). Use // NodeLineOffset to compute line offsets. // // If you are thinking, "wait, doesn't that just make things more complex than // using the real line number?", then you are 100% correct. Unfortunately, // pprof profiles generated by the runtime always contain line numbers as // adjusted by //line directives (because that is what we put in pclntab). Thus // for the best behavior when attempting to match the source with the profile // it makes sense to use the same line number space. // // Some of the effects of this to keep in mind: // // - For files without //line directives there is no impact, as RelLine() == // Line(). // - For functions entirely covered by the same //line directive (i.e., a // directive before the function definition and no directives within the // function), there should also be no impact, as line offsets within the // function should be the same as the real line offsets. // - Functions containing //line directives may be impacted. As fake line // numbers need not be monotonic, we may compute negative line offsets. We // should accept these and attempt to use them for best-effort matching, as // these offsets should still match if the source is unchanged, and may // continue to match with changed source depending on the impact of the // changes on fake line numbers. // - Functions containing //line directives may also contain duplicate lines, // making it ambiguous which call the profile is referencing. This is a // similar problem to multiple calls on a single real line, as we don't // currently track column numbers. // // Long term it would be best to extend pprof profiles to include real line // numbers. Until then, we have to live with these complexities. Luckily, // //line directives that change line numbers in strange ways should be rare, // and failing PGO matching on these files is not too big of a loss. package pgo import ( "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "fmt" "internal/profile" "os" ) // IRGraph is the key data structure that is built from profile. It is // essentially a call graph with nodes pointing to IRs of functions and edges // carrying weights and callsite information. The graph is bidirectional that // helps in removing nodes efficiently. type IRGraph struct { // Nodes of the graph IRNodes map[string]*IRNode OutEdges IREdgeMap InEdges IREdgeMap } // IRNode represents a node in the IRGraph. type IRNode struct { // Pointer to the IR of the Function represented by this node. AST *ir.Func // Flat weight of the IRNode, obtained from profile. Flat int64 // Cumulative weight of the IRNode. Cum int64 } // IREdgeMap maps an IRNode to its successors. type IREdgeMap map[*IRNode][]*IREdge // IREdge represents a call edge in the IRGraph with source, destination, // weight, callsite, and line number information. type IREdge struct { // Source and destination of the edge in IRNode. Src, Dst *IRNode Weight int64 CallSiteOffset int // Line offset from function start line. } // NodeMapKey represents a hash key to identify unique call-edges in profile // and in IR. Used for deduplication of call edges found in profile. type NodeMapKey struct { CallerName string CalleeName string CallSiteOffset int // Line offset from function start line. } // Weights capture both node weight and edge weight. type Weights struct { NFlat int64 NCum int64 EWeight int64 } // CallSiteInfo captures call-site information and its caller/callee. type CallSiteInfo struct { LineOffset int // Line offset from function start line. Caller *ir.Func Callee *ir.Func } // Profile contains the processed PGO profile and weighted call graph used for // PGO optimizations. type Profile struct { // Aggregated NodeWeights and EdgeWeights across the profile. This // helps us determine the percentage threshold for hot/cold // partitioning. TotalNodeWeight int64 TotalEdgeWeight int64 // NodeMap contains all unique call-edges in the profile and their // aggregated weight. NodeMap map[NodeMapKey]*Weights // WeightedCG represents the IRGraph built from profile, which we will // update as part of inlining. WeightedCG *IRGraph } // New generates a profile-graph from the profile. func New(profileFile string) (*Profile, error) { f, err := os.Open(profileFile) if err != nil { return nil, fmt.Errorf("error opening profile: %w", err) } defer f.Close() profile, err := profile.Parse(f) if err != nil { return nil, fmt.Errorf("error parsing profile: %w", err) } if len(profile.Sample) == 0 { // We accept empty profiles, but there is nothing to do. return nil, nil } valueIndex := -1 for i, s := range profile.SampleType { // Samples count is the raw data collected, and CPU nanoseconds is just // a scaled version of it, so either one we can find is fine. if (s.Type == "samples" && s.Unit == "count") || (s.Type == "cpu" && s.Unit == "nanoseconds") { valueIndex = i break } } if valueIndex == -1 { return nil, fmt.Errorf(`profile does not contain a sample index with value/type "samples/count" or cpu/nanoseconds"`) } g := newGraph(profile, &Options{ CallTree: false, SampleValue: func(v []int64) int64 { return v[valueIndex] }, }) p := &Profile{ NodeMap: make(map[NodeMapKey]*Weights), WeightedCG: &IRGraph{ IRNodes: make(map[string]*IRNode), }, } // Build the node map and totals from the profile graph. if err := p.processprofileGraph(g); err != nil { return nil, err } if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 { return nil, nil // accept but ignore profile with no samples. } // Create package-level call graph with weights from profile and IR. p.initializeIRGraph() return p, nil } // processprofileGraph builds various maps from the profile-graph. // // It initializes NodeMap and Total{Node,Edge}Weight based on the name and // callsite to compute node and edge weights which will be used later on to // create edges for WeightedCG. // // Caller should ignore the profile if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0. func (p *Profile) processprofileGraph(g *Graph) error { nFlat := make(map[string]int64) nCum := make(map[string]int64) seenStartLine := false // Accummulate weights for the same node. for _, n := range g.Nodes { canonicalName := n.Info.Name nFlat[canonicalName] += n.FlatValue() nCum[canonicalName] += n.CumValue() } // Process graph and build various node and edge maps which will // be consumed by AST walk. for _, n := range g.Nodes { seenStartLine = seenStartLine || n.Info.StartLine != 0 p.TotalNodeWeight += n.FlatValue() canonicalName := n.Info.Name // Create the key to the nodeMapKey. nodeinfo := NodeMapKey{ CallerName: canonicalName, CallSiteOffset: n.Info.Lineno - n.Info.StartLine, } for _, e := range n.Out { p.TotalEdgeWeight += e.WeightValue() nodeinfo.CalleeName = e.Dest.Info.Name if w, ok := p.NodeMap[nodeinfo]; ok { w.EWeight += e.WeightValue() } else { weights := new(Weights) weights.NFlat = nFlat[canonicalName] weights.NCum = nCum[canonicalName] weights.EWeight = e.WeightValue() p.NodeMap[nodeinfo] = weights } } } if p.TotalNodeWeight == 0 || p.TotalEdgeWeight == 0 { return nil // accept but ignore profile with no samples. } if !seenStartLine { // TODO(prattmic): If Function.start_line is missing we could // fall back to using absolute line numbers, which is better // than nothing. return fmt.Errorf("profile missing Function.start_line data (Go version of profiled application too old? Go 1.20+ automatically adds this to profiles)") } return nil } // initializeIRGraph builds the IRGraph by visiting all the ir.Func in decl list // of a package. func (p *Profile) initializeIRGraph() { // Bottomup walk over the function to create IRGraph. ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) { for _, n := range list { p.VisitIR(n) } }) } // VisitIR traverses the body of each ir.Func and use NodeMap to determine if // we need to add an edge from ir.Func and any node in the ir.Func body. func (p *Profile) VisitIR(fn *ir.Func) { g := p.WeightedCG if g.IRNodes == nil { g.IRNodes = make(map[string]*IRNode) } if g.OutEdges == nil { g.OutEdges = make(map[*IRNode][]*IREdge) } if g.InEdges == nil { g.InEdges = make(map[*IRNode][]*IREdge) } name := ir.LinkFuncName(fn) node := new(IRNode) node.AST = fn if g.IRNodes[name] == nil { g.IRNodes[name] = node } // Create the key for the NodeMapKey. nodeinfo := NodeMapKey{ CallerName: name, CalleeName: "", CallSiteOffset: 0, } // If the node exists, then update its node weight. if weights, ok := p.NodeMap[nodeinfo]; ok { g.IRNodes[name].Flat = weights.NFlat g.IRNodes[name].Cum = weights.NCum } // Recursively walk over the body of the function to create IRGraph edges. p.createIRGraphEdge(fn, g.IRNodes[name], name) } // NodeLineOffset returns the line offset of n in fn. func NodeLineOffset(n ir.Node, fn *ir.Func) int { // See "A note on line numbers" at the top of the file. line := int(base.Ctxt.InnermostPos(n.Pos()).RelLine()) startLine := int(base.Ctxt.InnermostPos(fn.Pos()).RelLine()) return line - startLine } // addIREdge adds an edge between caller and new node that points to `callee` // based on the profile-graph and NodeMap. func (p *Profile) addIREdge(caller *IRNode, callername string, call ir.Node, callee *ir.Func) { g := p.WeightedCG // Create an IRNode for the callee. calleenode := new(IRNode) calleenode.AST = callee calleename := ir.LinkFuncName(callee) // Create key for NodeMapKey. nodeinfo := NodeMapKey{ CallerName: callername, CalleeName: calleename, CallSiteOffset: NodeLineOffset(call, caller.AST), } // Create the callee node with node weight. if g.IRNodes[calleename] == nil { g.IRNodes[calleename] = calleenode nodeinfo2 := NodeMapKey{ CallerName: calleename, CalleeName: "", CallSiteOffset: 0, } if weights, ok := p.NodeMap[nodeinfo2]; ok { g.IRNodes[calleename].Flat = weights.NFlat g.IRNodes[calleename].Cum = weights.NCum } } if weights, ok := p.NodeMap[nodeinfo]; ok { caller.Flat = weights.NFlat caller.Cum = weights.NCum // Add edge in the IRGraph from caller to callee. info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: weights.EWeight, CallSiteOffset: nodeinfo.CallSiteOffset} g.OutEdges[caller] = append(g.OutEdges[caller], info) g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info) } else { nodeinfo.CalleeName = "" nodeinfo.CallSiteOffset = 0 if weights, ok := p.NodeMap[nodeinfo]; ok { caller.Flat = weights.NFlat caller.Cum = weights.NCum info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: 0, CallSiteOffset: nodeinfo.CallSiteOffset} g.OutEdges[caller] = append(g.OutEdges[caller], info) g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info) } else { info := &IREdge{Src: caller, Dst: g.IRNodes[calleename], Weight: 0, CallSiteOffset: nodeinfo.CallSiteOffset} g.OutEdges[caller] = append(g.OutEdges[caller], info) g.InEdges[g.IRNodes[calleename]] = append(g.InEdges[g.IRNodes[calleename]], info) } } } // createIRGraphEdge traverses the nodes in the body of ir.Func and add edges between callernode which points to the ir.Func and the nodes in the body. func (p *Profile) createIRGraphEdge(fn *ir.Func, callernode *IRNode, name string) { var doNode func(ir.Node) bool doNode = func(n ir.Node) bool { switch n.Op() { default: ir.DoChildren(n, doNode) case ir.OCALLFUNC: call := n.(*ir.CallExpr) // Find the callee function from the call site and add the edge. callee := inlCallee(call.X) if callee != nil { p.addIREdge(callernode, name, n, callee) } case ir.OCALLMETH: call := n.(*ir.CallExpr) // Find the callee method from the call site and add the edge. callee := ir.MethodExprName(call.X).Func p.addIREdge(callernode, name, n, callee) } return false } doNode(fn) } // WeightInPercentage converts profile weights to a percentage. func WeightInPercentage(value int64, total int64) float64 { return (float64(value) / float64(total)) * 100 } // PrintWeightedCallGraphDOT prints IRGraph in DOT format. func (p *Profile) PrintWeightedCallGraphDOT(edgeThreshold float64) { fmt.Printf("\ndigraph G {\n") fmt.Printf("forcelabels=true;\n") // List of functions in this package. funcs := make(map[string]struct{}) ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) { for _, f := range list { name := ir.LinkFuncName(f) funcs[name] = struct{}{} } }) // Determine nodes of DOT. nodes := make(map[string]*ir.Func) for name := range funcs { if n, ok := p.WeightedCG.IRNodes[name]; ok { for _, e := range p.WeightedCG.OutEdges[n] { if _, ok := nodes[ir.LinkFuncName(e.Src.AST)]; !ok { nodes[ir.LinkFuncName(e.Src.AST)] = e.Src.AST } if _, ok := nodes[ir.LinkFuncName(e.Dst.AST)]; !ok { nodes[ir.LinkFuncName(e.Dst.AST)] = e.Dst.AST } } if _, ok := nodes[ir.LinkFuncName(n.AST)]; !ok { nodes[ir.LinkFuncName(n.AST)] = n.AST } } } // Print nodes. for name, ast := range nodes { if n, ok := p.WeightedCG.IRNodes[name]; ok { nodeweight := WeightInPercentage(n.Flat, p.TotalNodeWeight) color := "black" if ast.Inl != nil { fmt.Printf("\"%v\" [color=%v,label=\"%v,freq=%.2f,inl_cost=%d\"];\n", ir.LinkFuncName(ast), color, ir.LinkFuncName(ast), nodeweight, ast.Inl.Cost) } else { fmt.Printf("\"%v\" [color=%v, label=\"%v,freq=%.2f\"];\n", ir.LinkFuncName(ast), color, ir.LinkFuncName(ast), nodeweight) } } } // Print edges. ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) { for _, f := range list { name := ir.LinkFuncName(f) if n, ok := p.WeightedCG.IRNodes[name]; ok { for _, e := range p.WeightedCG.OutEdges[n] { edgepercent := WeightInPercentage(e.Weight, p.TotalEdgeWeight) if edgepercent > edgeThreshold { fmt.Printf("edge [color=red, style=solid];\n") } else { fmt.Printf("edge [color=black, style=solid];\n") } fmt.Printf("\"%v\" -> \"%v\" [label=\"%.2f\"];\n", ir.LinkFuncName(n.AST), ir.LinkFuncName(e.Dst.AST), edgepercent) } } } }) fmt.Printf("}\n") } // RedirectEdges deletes and redirects out-edges from node cur based on // inlining information via inlinedCallSites. // // CallSiteInfo.Callee must be nil. func (p *Profile) RedirectEdges(cur *IRNode, inlinedCallSites map[CallSiteInfo]struct{}) { g := p.WeightedCG i := 0 outs := g.OutEdges[cur] for i < len(outs) { outEdge := outs[i] redirected := false _, found := inlinedCallSites[CallSiteInfo{LineOffset: outEdge.CallSiteOffset, Caller: cur.AST}] if !found { for _, InEdge := range g.InEdges[cur] { if _, ok := inlinedCallSites[CallSiteInfo{LineOffset: InEdge.CallSiteOffset, Caller: InEdge.Src.AST}]; ok { weight := g.calculateWeight(InEdge.Src, cur) g.redirectEdge(InEdge.Src, outEdge, weight) redirected = true } } } if found || redirected { g.remove(cur, i) outs = g.OutEdges[cur] continue } i++ } } // redirectEdge redirects a node's out-edge to one of its parent nodes, cloning is // required as the node might be inlined in multiple call-sites. // TODO: adjust the in-edges of outEdge.Dst if necessary func (g *IRGraph) redirectEdge(parent *IRNode, outEdge *IREdge, weight int64) { edge := &IREdge{Src: parent, Dst: outEdge.Dst, Weight: weight * outEdge.Weight, CallSiteOffset: outEdge.CallSiteOffset} g.OutEdges[parent] = append(g.OutEdges[parent], edge) } // remove deletes the cur-node's out-edges at index idx. func (g *IRGraph) remove(cur *IRNode, i int) { if len(g.OutEdges[cur]) >= 2 { g.OutEdges[cur][i] = g.OutEdges[cur][len(g.OutEdges[cur])-1] g.OutEdges[cur] = g.OutEdges[cur][:len(g.OutEdges[cur])-1] } else { delete(g.OutEdges, cur) } } // calculateWeight calculates the weight of the new redirected edge. func (g *IRGraph) calculateWeight(parent *IRNode, cur *IRNode) int64 { sum := int64(0) pw := int64(0) for _, InEdge := range g.InEdges[cur] { sum += InEdge.Weight if InEdge.Src == parent { pw = InEdge.Weight } } weight := int64(0) if sum != 0 { weight = pw / sum } else { weight = pw } return weight } // inlCallee is same as the implementation for inl.go with one change. The change is that we do not invoke CanInline on a closure. func inlCallee(fn ir.Node) *ir.Func { fn = ir.StaticValue(fn) switch fn.Op() { case ir.OMETHEXPR: fn := fn.(*ir.SelectorExpr) n := ir.MethodExprName(fn) // Check that receiver type matches fn.X. // TODO(mdempsky): Handle implicit dereference // of pointer receiver argument? if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { return nil } return n.Func case ir.ONAME: fn := fn.(*ir.Name) if fn.Class == ir.PFUNC { return fn.Func } case ir.OCLOSURE: fn := fn.(*ir.ClosureExpr) c := fn.Func return c } return nil }