// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // The inlining facility makes 2 passes: first CanInline determines which // functions are suitable for inlining, and for those that are it // saves a copy of the body. Then InlineCalls walks each function body to // expand calls to inlinable functions. // // The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1, // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and // are not supported. // 0: disabled // 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default) // 2: (unassigned) // 3: (unassigned) // 4: allow non-leaf functions // // At some point this may get another default and become switch-offable with -N. // // The -d typcheckinl flag enables early typechecking of all imported bodies, // which is useful to flush out bugs. // // The Debug.m flag enables diagnostic output. a single -m is useful for verifying // which calls get inlined or not, more is for debugging, and may go away at any point. package inline import ( "fmt" "go/constant" "internal/goexperiment" "strconv" "cmd/compile/internal/base" "cmd/compile/internal/inline/inlheur" "cmd/compile/internal/ir" "cmd/compile/internal/logopt" "cmd/compile/internal/pgo" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/obj" ) // Inlining budget parameters, gathered in one place const ( inlineMaxBudget = 80 inlineExtraAppendCost = 0 // default is to inline if there's at most one call. -l=4 overrides this by using 1 instead. inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742 inlineExtraPanicCost = 1 // do not penalize inlining panics. inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help. inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big". inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function. ) var ( // List of all hot callee nodes. // TODO(prattmic): Make this non-global. candHotCalleeMap = make(map[*pgo.IRNode]struct{}) // List of all hot call sites. CallSiteInfo.Callee is always nil. // TODO(prattmic): Make this non-global. candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{}) // Threshold in percentage for hot callsite inlining. inlineHotCallSiteThresholdPercent float64 // Threshold in CDF percentage for hot callsite inlining, // that is, for a threshold of X the hottest callsites that // make up the top X% of total edge weight will be // considered hot for inlining candidates. inlineCDFHotCallSiteThresholdPercent = float64(99) // Budget increased due to hotness. inlineHotMaxBudget int32 = 2000 ) // pgoInlinePrologue records the hot callsites from ir-graph. func pgoInlinePrologue(p *pgo.Profile, funcs []*ir.Func) { if base.Debug.PGOInlineCDFThreshold != "" { if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 { inlineCDFHotCallSiteThresholdPercent = s } else { base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100") } } var hotCallsites []pgo.NamedCallEdge inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p) if base.Debug.PGODebug > 0 { fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent) } if x := base.Debug.PGOInlineBudget; x != 0 { inlineHotMaxBudget = int32(x) } for _, n := range hotCallsites { // mark inlineable callees from hot edges if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil { candHotCalleeMap[callee] = struct{}{} } // mark hot call sites if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil { csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST} candHotEdgeMap[csi] = struct{}{} } } if base.Debug.PGODebug >= 3 { fmt.Printf("hot-cg before inline in dot format:") p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent) } } // hotNodesFromCDF computes an edge weight threshold and the list of hot // nodes that make up the given percentage of the CDF. The threshold, as // a percent, is the lower bound of weight for nodes to be considered hot // (currently only used in debug prints) (in case of equal weights, // comparing with the threshold may not accurately reflect which nodes are // considiered hot). func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NamedCallEdge) { cum := int64(0) for i, n := range p.NamedEdgeMap.ByWeight { w := p.NamedEdgeMap.Weight[n] cum += w if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent { // nodes[:i+1] to include the very last node that makes it to go over the threshold. // (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to // include that node instead of excluding it.) return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1] } } return 0, p.NamedEdgeMap.ByWeight } // InlinePackage finds functions that can be inlined and clones them before walk expands them. func InlinePackage(p *pgo.Profile) { if base.Debug.PGOInline == 0 { p = nil } InlineDecls(p, typecheck.Target.Funcs, true) // Perform a garbage collection of hidden closures functions that // are no longer reachable from top-level functions following // inlining. See #59404 and #59638 for more context. garbageCollectUnreferencedHiddenClosures() if base.Debug.DumpInlFuncProps != "" { inlheur.DumpFuncProps(nil, base.Debug.DumpInlFuncProps, nil, inlineMaxBudget) } if goexperiment.NewInliner { postProcessCallSites(p) } } // InlineDecls applies inlining to the given batch of declarations. func InlineDecls(p *pgo.Profile, funcs []*ir.Func, doInline bool) { if p != nil { pgoInlinePrologue(p, funcs) } doCanInline := func(n *ir.Func, recursive bool, numfns int) { if !recursive || numfns > 1 { // We allow inlining if there is no // recursion, or the recursion cycle is // across more than one function. CanInline(n, p) } else { if base.Flag.LowerM > 1 && n.OClosure == nil { fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname) } } } ir.VisitFuncsBottomUp(funcs, func(list []*ir.Func, recursive bool) { numfns := numNonClosures(list) // We visit functions within an SCC in fairly arbitrary order, // so by computing inlinability for all functions in the SCC // before performing any inlining, the results are less // sensitive to the order within the SCC (see #58905 for an // example). // First compute inlinability for all functions in the SCC ... for _, n := range list { doCanInline(n, recursive, numfns) } // ... then make a second pass to do inlining of calls. if doInline { for _, n := range list { InlineCalls(n, p) } } }) } // garbageCollectUnreferencedHiddenClosures makes a pass over all the // top-level (non-hidden-closure) functions looking for nested closure // functions that are reachable, then sweeps through the Target.Decls // list and marks any non-reachable hidden closure function as dead. // See issues #59404 and #59638 for more context. func garbageCollectUnreferencedHiddenClosures() { liveFuncs := make(map[*ir.Func]bool) var markLiveFuncs func(fn *ir.Func) markLiveFuncs = func(fn *ir.Func) { if liveFuncs[fn] { return } liveFuncs[fn] = true ir.Visit(fn, func(n ir.Node) { if clo, ok := n.(*ir.ClosureExpr); ok { markLiveFuncs(clo.Func) } }) } for i := 0; i < len(typecheck.Target.Funcs); i++ { fn := typecheck.Target.Funcs[i] if fn.IsHiddenClosure() { continue } markLiveFuncs(fn) } for i := 0; i < len(typecheck.Target.Funcs); i++ { fn := typecheck.Target.Funcs[i] if !fn.IsHiddenClosure() { continue } if fn.IsDeadcodeClosure() { continue } if liveFuncs[fn] { continue } fn.SetIsDeadcodeClosure(true) if base.Flag.LowerM > 2 { fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn) } if fn.Inl != nil && fn.LSym == nil { ir.InitLSym(fn, true) } } } // inlineBudget determines the max budget for function 'fn' prior to // analyzing the hairyness of the body of 'fn'. We pass in the pgo // profile if available (which can change the budget), also a // 'relaxed' flag, which expands the budget slightly to allow for the // possibility that a call to the function might have its score // adjusted downwards. If 'verbose' is set, then print a remark where // we boost the budget due to PGO. func inlineBudget(fn *ir.Func, profile *pgo.Profile, relaxed bool, verbose bool) int32 { // Update the budget for profile-guided inlining. budget := int32(inlineMaxBudget) if profile != nil { if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok { if _, ok := candHotCalleeMap[n]; ok { budget = int32(inlineHotMaxBudget) if verbose { fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn)) } } } } if relaxed { budget += inlineMaxBudget } return budget } // CanInline determines whether fn is inlineable. // If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl. // fn and fn.Body will already have been typechecked. func CanInline(fn *ir.Func, profile *pgo.Profile) { if fn.Nname == nil { base.Fatalf("CanInline no nname %+v", fn) } var funcProps *inlheur.FuncProps if goexperiment.NewInliner || inlheur.UnitTesting() { callCanInline := func(fn *ir.Func) { CanInline(fn, profile) } funcProps = inlheur.AnalyzeFunc(fn, callCanInline, inlineMaxBudget) budgetForFunc := func(fn *ir.Func) int32 { return inlineBudget(fn, profile, true, false) } defer func() { inlheur.RevisitInlinability(fn, budgetForFunc) }() } var reason string // reason, if any, that the function was not inlined if base.Flag.LowerM > 1 || logopt.Enabled() { defer func() { if reason != "" { if base.Flag.LowerM > 1 { fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason) } if logopt.Enabled() { logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason) } } }() } reason = InlineImpossible(fn) if reason != "" { return } if fn.Typecheck() == 0 { base.Fatalf("CanInline on non-typechecked function %v", fn) } n := fn.Nname if n.Func.InlinabilityChecked() { return } defer n.Func.SetInlinabilityChecked(true) cc := int32(inlineExtraCallCost) if base.Flag.LowerL == 4 { cc = 1 // this appears to yield better performance than 0. } // Used a "relaxed" inline budget if goexperiment.NewInliner is in // effect, or if we're producing a debugging dump. relaxed := goexperiment.NewInliner || (base.Debug.DumpInlFuncProps != "" || base.Debug.DumpInlCallSiteScores != 0) // Compute the inline budget for this func. budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0) // At this point in the game the function we're looking at may // have "stale" autos, vars that still appear in the Dcl list, but // which no longer have any uses in the function body (due to // elimination by deadcode). We'd like to exclude these dead vars // when creating the "Inline.Dcl" field below; to accomplish this, // the hairyVisitor below builds up a map of used/referenced // locals, and we use this map to produce a pruned Inline.Dcl // list. See issue 25459 for more context. visitor := hairyVisitor{ curFunc: fn, isBigFunc: isBigFunc(fn), budget: budget, maxBudget: budget, extraCallCost: cc, profile: profile, } if visitor.tooHairy(fn) { reason = visitor.reason return } n.Func.Inl = &ir.Inline{ Cost: budget - visitor.budget, Dcl: pruneUnusedAutos(n.Func.Dcl, &visitor), HaveDcl: true, CanDelayResults: canDelayResults(fn), } if goexperiment.NewInliner { n.Func.Inl.Properties = funcProps.SerializeToString() } if base.Flag.LowerM > 1 { fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, budget-visitor.budget, fn.Type(), ir.Nodes(fn.Body)) } else if base.Flag.LowerM != 0 { fmt.Printf("%v: can inline %v\n", ir.Line(fn), n) } if logopt.Enabled() { logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", budget-visitor.budget)) } } // InlineImpossible returns a non-empty reason string if fn is impossible to // inline regardless of cost or contents. func InlineImpossible(fn *ir.Func) string { var reason string // reason, if any, that the function can not be inlined. if fn.Nname == nil { reason = "no name" return reason } // If marked "go:noinline", don't inline. if fn.Pragma&ir.Noinline != 0 { reason = "marked go:noinline" return reason } // If marked "go:norace" and -race compilation, don't inline. if base.Flag.Race && fn.Pragma&ir.Norace != 0 { reason = "marked go:norace with -race compilation" return reason } // If marked "go:nocheckptr" and -d checkptr compilation, don't inline. if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 { reason = "marked go:nocheckptr" return reason } // If marked "go:cgo_unsafe_args", don't inline, since the function // makes assumptions about its argument frame layout. if fn.Pragma&ir.CgoUnsafeArgs != 0 { reason = "marked go:cgo_unsafe_args" return reason } // If marked as "go:uintptrkeepalive", don't inline, since the keep // alive information is lost during inlining. // // TODO(prattmic): This is handled on calls during escape analysis, // which is after inlining. Move prior to inlining so the keep-alive is // maintained after inlining. if fn.Pragma&ir.UintptrKeepAlive != 0 { reason = "marked as having a keep-alive uintptr argument" return reason } // If marked as "go:uintptrescapes", don't inline, since the escape // information is lost during inlining. if fn.Pragma&ir.UintptrEscapes != 0 { reason = "marked as having an escaping uintptr argument" return reason } // The nowritebarrierrec checker currently works at function // granularity, so inlining yeswritebarrierrec functions can confuse it // (#22342). As a workaround, disallow inlining them for now. if fn.Pragma&ir.Yeswritebarrierrec != 0 { reason = "marked go:yeswritebarrierrec" return reason } // If a local function has no fn.Body (is defined outside of Go), cannot inline it. // Imported functions don't have fn.Body but might have inline body in fn.Inl. if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) { reason = "no function body" return reason } return "" } // canDelayResults reports whether inlined calls to fn can delay // declaring the result parameter until the "return" statement. func canDelayResults(fn *ir.Func) bool { // We can delay declaring+initializing result parameters if: // (1) there's exactly one "return" statement in the inlined function; // (2) it's not an empty return statement (#44355); and // (3) the result parameters aren't named. nreturns := 0 ir.VisitList(fn.Body, func(n ir.Node) { if n, ok := n.(*ir.ReturnStmt); ok { nreturns++ if len(n.Results) == 0 { nreturns++ // empty return statement (case 2) } } }) if nreturns != 1 { return false // not exactly one return statement (case 1) } // temporaries for return values. for _, param := range fn.Type().Results() { if sym := param.Sym; sym != nil && !sym.IsBlank() { return false // found a named result parameter (case 3) } } return true } // hairyVisitor visits a function body to determine its inlining // hairiness and whether or not it can be inlined. type hairyVisitor struct { // This is needed to access the current caller in the doNode function. curFunc *ir.Func isBigFunc bool budget int32 maxBudget int32 reason string extraCallCost int32 usedLocals ir.NameSet do func(ir.Node) bool profile *pgo.Profile } func (v *hairyVisitor) tooHairy(fn *ir.Func) bool { v.do = v.doNode // cache closure if ir.DoChildren(fn, v.do) { return true } if v.budget < 0 { v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget) return true } return false } // doNode visits n and its children, updates the state in v, and returns true if // n makes the current function too hairy for inlining. func (v *hairyVisitor) doNode(n ir.Node) bool { if n == nil { return false } opSwitch: switch n.Op() { // Call is okay if inlinable and we have the budget for the body. case ir.OCALLFUNC: n := n.(*ir.CallExpr) // Functions that call runtime.getcaller{pc,sp} can not be inlined // because getcaller{pc,sp} expect a pointer to the caller's first argument. // // runtime.throw is a "cheap call" like panic in normal code. var cheap bool if n.Fun.Op() == ir.ONAME { name := n.Fun.(*ir.Name) if name.Class == ir.PFUNC { switch fn := types.RuntimeSymName(name.Sym()); fn { case "getcallerpc", "getcallersp": v.reason = "call to " + fn return true case "throw": v.budget -= inlineExtraThrowCost break opSwitch } // Special case for reflect.noescape. It does just type // conversions to appease the escape analysis, and doesn't // generate code. if types.ReflectSymName(name.Sym()) == "noescape" { cheap = true } } // Special case for coverage counter updates; although // these correspond to real operations, we treat them as // zero cost for the moment. This is due to the existence // of tests that are sensitive to inlining-- if the // insertion of coverage instrumentation happens to tip a // given function over the threshold and move it from // "inlinable" to "not-inlinable", this can cause changes // in allocation behavior, which can then result in test // failures (a good example is the TestAllocations in // crypto/ed25519). if isAtomicCoverageCounterUpdate(n) { return false } } if n.Fun.Op() == ir.OMETHEXPR { if meth := ir.MethodExprName(n.Fun); meth != nil { if fn := meth.Func; fn != nil { s := fn.Sym() if types.RuntimeSymName(s) == "heapBits.nextArena" { // Special case: explicitly allow mid-stack inlining of // runtime.heapBits.next even though it calls slow-path // runtime.heapBits.nextArena. cheap = true } // Special case: on architectures that can do unaligned loads, // explicitly mark encoding/binary methods as cheap, // because in practice they are, even though our inlining // budgeting system does not see that. See issue 42958. if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" { switch s.Name { case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16", "bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16", "littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16", "bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16", "littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16", "bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16": cheap = true } } } } } if cheap { break // treat like any other node, that is, cost of 1 } if ir.IsIntrinsicCall(n) { // Treat like any other node. break } if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) { // Check whether we'd actually inline this call. Set // log == false since we aren't actually doing inlining // yet. if canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false) { // mkinlcall would inline this call [1], so use // the cost of the inline body as the cost of // the call, as that is what will actually // appear in the code. // // [1] This is almost a perfect match to the // mkinlcall logic, except that // canInlineCallExpr considers inlining cycles // by looking at what has already been inlined. // Since we haven't done any inlining yet we // will miss those. v.budget -= callee.Inl.Cost break } } // Call cost for non-leaf inlining. v.budget -= v.extraCallCost case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") // Things that are too hairy, irrespective of the budget case ir.OCALL, ir.OCALLINTER: // Call cost for non-leaf inlining. v.budget -= v.extraCallCost case ir.OPANIC: n := n.(*ir.UnaryExpr) if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() { // Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining. // Before CL 284412, these conversions were introduced later in the // compiler, so they didn't count against inlining budget. v.budget++ } v.budget -= inlineExtraPanicCost case ir.ORECOVER: base.FatalfAt(n.Pos(), "ORECOVER missed typecheck") case ir.ORECOVERFP: // recover matches the argument frame pointer to find // the right panic value, so it needs an argument frame. v.reason = "call to recover" return true case ir.OCLOSURE: if base.Debug.InlFuncsWithClosures == 0 { v.reason = "not inlining functions with closures" return true } // TODO(danscales): Maybe make budget proportional to number of closure // variables, e.g.: //v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3) // TODO(austin): However, if we're able to inline this closure into // v.curFunc, then we actually pay nothing for the closure captures. We // should try to account for that if we're going to account for captures. v.budget -= 15 case ir.OGO, ir.ODEFER, ir.OTAILCALL: v.reason = "unhandled op " + n.Op().String() return true case ir.OAPPEND: v.budget -= inlineExtraAppendCost case ir.OADDR: n := n.(*ir.AddrExpr) // Make "&s.f" cost 0 when f's offset is zero. if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) { if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 { v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR } } case ir.ODEREF: // *(*X)(unsafe.Pointer(&x)) is low-cost n := n.(*ir.StarExpr) ptr := n.X for ptr.Op() == ir.OCONVNOP { ptr = ptr.(*ir.ConvExpr).X } if ptr.Op() == ir.OADDR { v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR } case ir.OCONVNOP: // This doesn't produce code, but the children might. v.budget++ // undo default cost case ir.OFALL, ir.OTYPE: // These nodes don't produce code; omit from inlining budget. return false case ir.OIF: n := n.(*ir.IfStmt) if ir.IsConst(n.Cond, constant.Bool) { // This if and the condition cost nothing. if doList(n.Init(), v.do) { return true } if ir.BoolVal(n.Cond) { return doList(n.Body, v.do) } else { return doList(n.Else, v.do) } } case ir.ONAME: n := n.(*ir.Name) if n.Class == ir.PAUTO { v.usedLocals.Add(n) } case ir.OBLOCK: // The only OBLOCK we should see at this point is an empty one. // In any event, let the visitList(n.List()) below take care of the statements, // and don't charge for the OBLOCK itself. The ++ undoes the -- below. v.budget++ case ir.OMETHVALUE, ir.OSLICELIT: v.budget-- // Hack for toolstash -cmp. case ir.OMETHEXPR: v.budget++ // Hack for toolstash -cmp. case ir.OAS2: n := n.(*ir.AssignListStmt) // Unified IR unconditionally rewrites: // // a, b = f() // // into: // // DCL tmp1 // DCL tmp2 // tmp1, tmp2 = f() // a, b = tmp1, tmp2 // // so that it can insert implicit conversions as necessary. To // minimize impact to the existing inlining heuristics (in // particular, to avoid breaking the existing inlinability regress // tests), we need to compensate for this here. // // See also identical logic in isBigFunc. if init := n.Rhs[0].Init(); len(init) == 1 { if _, ok := init[0].(*ir.AssignListStmt); ok { // 4 for each value, because each temporary variable now // appears 3 times (DCL, LHS, RHS), plus an extra DCL node. // // 1 for the extra "tmp1, tmp2 = f()" assignment statement. v.budget += 4*int32(len(n.Lhs)) + 1 } } case ir.OAS: // Special case for coverage counter updates and coverage // function registrations. Although these correspond to real // operations, we treat them as zero cost for the moment. This // is primarily due to the existence of tests that are // sensitive to inlining-- if the insertion of coverage // instrumentation happens to tip a given function over the // threshold and move it from "inlinable" to "not-inlinable", // this can cause changes in allocation behavior, which can // then result in test failures (a good example is the // TestAllocations in crypto/ed25519). n := n.(*ir.AssignStmt) if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) { return false } } v.budget-- // When debugging, don't stop early, to get full cost of inlining this function if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() { v.reason = "too expensive" return true } return ir.DoChildren(n, v.do) } func isBigFunc(fn *ir.Func) bool { budget := inlineBigFunctionNodes return ir.Any(fn, func(n ir.Node) bool { // See logic in hairyVisitor.doNode, explaining unified IR's // handling of "a, b = f()" assignments. if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 { if init := n.Rhs[0].Init(); len(init) == 1 { if _, ok := init[0].(*ir.AssignListStmt); ok { budget += 4*len(n.Lhs) + 1 } } } budget-- return budget <= 0 }) } // InlineCalls/inlnode walks fn's statements and expressions and substitutes any // calls made to inlineable functions. This is the external entry point. func InlineCalls(fn *ir.Func, profile *pgo.Profile) { if goexperiment.NewInliner && !fn.Wrapper() { inlheur.ScoreCalls(fn) } if base.Debug.DumpInlFuncProps != "" && !fn.Wrapper() { inlheur.DumpFuncProps(fn, base.Debug.DumpInlFuncProps, func(fn *ir.Func) { CanInline(fn, profile) }, inlineMaxBudget) } savefn := ir.CurFunc ir.CurFunc = fn bigCaller := isBigFunc(fn) if bigCaller && base.Flag.LowerM > 1 { fmt.Printf("%v: function %v considered 'big'; reducing max cost of inlinees\n", ir.Line(fn), fn) } var inlCalls []*ir.InlinedCallExpr var edit func(ir.Node) ir.Node edit = func(n ir.Node) ir.Node { return inlnode(fn, n, bigCaller, &inlCalls, edit, profile) } ir.EditChildren(fn, edit) // If we inlined any calls, we want to recursively visit their // bodies for further inlining. However, we need to wait until // *after* the original function body has been expanded, or else // inlCallee can have false positives (e.g., #54632). for len(inlCalls) > 0 { call := inlCalls[0] inlCalls = inlCalls[1:] ir.EditChildren(call, edit) } ir.CurFunc = savefn } // inlnode recurses over the tree to find inlineable calls, which will // be turned into OINLCALLs by mkinlcall. When the recursion comes // back up will examine left, right, list, rlist, ninit, ntest, nincr, // nbody and nelse and use one of the 4 inlconv/glue functions above // to turn the OINLCALL into an expression, a statement, or patch it // in to this nodes list or rlist as appropriate. // NOTE it makes no sense to pass the glue functions down the // recursion to the level where the OINLCALL gets created because they // have to edit /this/ n, so you'd have to push that one down as well, // but then you may as well do it here. so this is cleaner and // shorter and less complicated. // The result of inlnode MUST be assigned back to n, e.g. // // n.Left = inlnode(n.Left) func inlnode(callerfn *ir.Func, n ir.Node, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr, edit func(ir.Node) ir.Node, profile *pgo.Profile) ir.Node { if n == nil { return n } switch n.Op() { case ir.ODEFER, ir.OGO: n := n.(*ir.GoDeferStmt) switch call := n.Call; call.Op() { case ir.OCALLMETH: base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: call := call.(*ir.CallExpr) call.NoInline = true } case ir.OTAILCALL: n := n.(*ir.TailCallStmt) n.Call.NoInline = true // Not inline a tail call for now. Maybe we could inline it just like RETURN fn(arg)? // TODO do them here (or earlier), // so escape analysis can avoid more heapmoves. case ir.OCLOSURE: return n case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: n := n.(*ir.CallExpr) if n.Fun.Op() == ir.OMETHEXPR { // Prevent inlining some reflect.Value methods when using checkptr, // even when package reflect was compiled without it (#35073). if meth := ir.MethodExprName(n.Fun); meth != nil { s := meth.Sym() if base.Debug.Checkptr != 0 { switch types.ReflectSymName(s) { case "Value.UnsafeAddr", "Value.Pointer": return n } } } } } lno := ir.SetPos(n) ir.EditChildren(n, edit) // with all the branches out of the way, it is now time to // transmogrify this node itself unless inhibited by the // switch at the top of this function. switch n.Op() { case ir.OCALLMETH: base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck") case ir.OCALLFUNC: call := n.(*ir.CallExpr) if call.NoInline { break } if base.Flag.LowerM > 3 { fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.Fun) } if ir.IsIntrinsicCall(call) { break } if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) { n = mkinlcall(callerfn, call, fn, bigCaller, inlCalls) } } base.Pos = lno return n } // inlCallee takes a function-typed expression and returns the underlying function ONAME // that it refers to if statically known. Otherwise, it returns nil. func inlCallee(caller *ir.Func, fn ir.Node, profile *pgo.Profile) (res *ir.Func) { fn = ir.StaticValue(fn) switch fn.Op() { case ir.OMETHEXPR: fn := fn.(*ir.SelectorExpr) n := ir.MethodExprName(fn) // Check that receiver type matches fn.X. // TODO(mdempsky): Handle implicit dereference // of pointer receiver argument? if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) { return nil } return n.Func case ir.ONAME: fn := fn.(*ir.Name) if fn.Class == ir.PFUNC { return fn.Func } case ir.OCLOSURE: fn := fn.(*ir.ClosureExpr) c := fn.Func if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller { return nil // inliner doesn't support inlining across closure frames } CanInline(c, profile) return c } return nil } var inlgen int // SSADumpInline gives the SSA back end a chance to dump the function // when producing output for debugging the compiler itself. var SSADumpInline = func(*ir.Func) {} // InlineCall allows the inliner implementation to be overridden. // If it returns nil, the function will not be inlined. var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr { base.Fatalf("inline.InlineCall not overridden") panic("unreachable") } // inlineCostOK returns true if call n from caller to callee is cheap enough to // inline. bigCaller indicates that caller is a big function. // // If inlineCostOK returns false, it also returns the max cost that the callee // exceeded. func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32) { maxCost := int32(inlineMaxBudget) if bigCaller { // We use this to restrict inlining into very big functions. // See issue 26546 and 17566. maxCost = inlineBigFunctionMaxCost } metric := callee.Inl.Cost if goexperiment.NewInliner { score, ok := inlheur.GetCallSiteScore(caller, n) if ok { metric = int32(score) } } if metric <= maxCost { // Simple case. Function is already cheap enough. return true, 0 } // We'll also allow inlining of hot functions below inlineHotMaxBudget, // but only in small functions. lineOffset := pgo.NodeLineOffset(n, caller) csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller} if _, ok := candHotEdgeMap[csi]; !ok { // Cold return false, maxCost } // Hot if bigCaller { if base.Debug.PGODebug > 0 { fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) } return false, maxCost } if metric > inlineHotMaxBudget { return false, inlineHotMaxBudget } if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) { // De-selected by PGO Hash. return false, maxCost } if base.Debug.PGODebug > 0 { fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller)) } return true, 0 } // canInlineCallsite returns true if the call n from caller to callee can be // inlined. bigCaller indicates that caller is a big function. log indicates // that the 'cannot inline' reason should be logged. // // Preconditions: CanInline(callee) has already been called. func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) bool { if callee.Inl == nil { // callee is never inlinable. if log && logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee))) } return false } if ok, maxCost := inlineCostOK(n, callerfn, callee, bigCaller); !ok { // callee cost too high for this call site. if log && logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost)) } return false } if callee == callerfn { // Can't recursively inline a function into itself. if log && logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn))) } return false } if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) { // Runtime package must not be instrumented. // Instrument skips runtime package. However, some runtime code can be // inlined into other packages and instrumented there. To avoid this, // we disable inlining of runtime functions when instrumenting. // The example that we observed is inlining of LockOSThread, // which lead to false race reports on m contents. if log && logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee))) } return false } if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) { if log && logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee))) } return false } // Check if we've already inlined this function at this particular // call site, in order to stop inlining when we reach the beginning // of a recursion cycle again. We don't inline immediately recursive // functions, but allow inlining if there is a recursion cycle of // many functions. Most likely, the inlining will stop before we // even hit the beginning of the cycle again, but this catches the // unusual case. parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() sym := callee.Linksym() for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) { if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym { if log { if base.Flag.LowerM > 1 { fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn)) } if logopt.Enabled() { logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn), fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee))) } } return false } } return true } // If n is a OCALLFUNC node, and fn is an ONAME node for a // function with an inlinable body, return an OINLCALL node that can replace n. // The returned node's Ninit has the parameter assignments, the Nbody is the // inlined function body, and (List, Rlist) contain the (input, output) // parameters. // The result of mkinlcall MUST be assigned back to n, e.g. // // n.Left = mkinlcall(n.Left, fn, isddd) func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool, inlCalls *[]*ir.InlinedCallExpr) ir.Node { if !canInlineCallExpr(callerfn, n, fn, bigCaller, true) { return n } typecheck.AssertFixedCall(n) parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex() sym := fn.Linksym() inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn)) closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) { // The linker needs FuncInfo metadata for all inlined // functions. This is typically handled by gc.enqueueFunc // calling ir.InitLSym for all function declarations in // typecheck.Target.Decls (ir.UseClosure adds all closures to // Decls). // // However, non-trivial closures in Decls are ignored, and are // insteaded enqueued when walk of the calling function // discovers them. // // This presents a problem for direct calls to closures. // Inlining will replace the entire closure definition with its // body, which hides the closure from walk and thus suppresses // symbol creation. // // Explicitly create a symbol early in this edge case to ensure // we keep this metadata. // // TODO: Refactor to keep a reference so this can all be done // by enqueueFunc. if n.Op() != ir.OCALLFUNC { // Not a standard call. return } if n.Fun.Op() != ir.OCLOSURE { // Not a direct closure call. return } clo := n.Fun.(*ir.ClosureExpr) if ir.IsTrivialClosure(clo) { // enqueueFunc will handle trivial closures anyways. return } ir.InitLSym(fn, true) } closureInitLSym(n, fn) if base.Flag.GenDwarfInl > 0 { if !sym.WasInlined() { base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn) sym.Set(obj.AttrWasInlined, true) } } if base.Flag.LowerM != 0 { fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn) } if base.Flag.LowerM > 2 { fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n) } res := InlineCall(callerfn, n, fn, inlIndex) if res == nil { base.FatalfAt(n.Pos(), "inlining call to %v failed", fn) } if base.Flag.LowerM > 2 { fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res) } *inlCalls = append(*inlCalls, res) return res } // CalleeEffects appends any side effects from evaluating callee to init. func CalleeEffects(init *ir.Nodes, callee ir.Node) { for { init.Append(ir.TakeInit(callee)...) switch callee.Op() { case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR: return // done case ir.OCONVNOP: conv := callee.(*ir.ConvExpr) callee = conv.X case ir.OINLCALL: ic := callee.(*ir.InlinedCallExpr) init.Append(ic.Body.Take()...) callee = ic.SingleResult() default: base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee) } } } func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name { s := make([]*ir.Name, 0, len(ll)) for _, n := range ll { if n.Class == ir.PAUTO { if !vis.usedLocals.Has(n) { // TODO(mdempsky): Simplify code after confident that this // never happens anymore. base.FatalfAt(n.Pos(), "unused auto: %v", n) continue } } s = append(s, n) } return s } // numNonClosures returns the number of functions in list which are not closures. func numNonClosures(list []*ir.Func) int { count := 0 for _, fn := range list { if fn.OClosure == nil { count++ } } return count } func doList(list []ir.Node, do func(ir.Node) bool) bool { for _, x := range list { if x != nil { if do(x) { return true } } } return false } // isIndexingCoverageCounter returns true if the specified node 'n' is indexing // into a coverage counter array. func isIndexingCoverageCounter(n ir.Node) bool { if n.Op() != ir.OINDEX { return false } ixn := n.(*ir.IndexExpr) if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() { return false } nn := ixn.X.(*ir.Name) return nn.CoverageCounter() } // isAtomicCoverageCounterUpdate examines the specified node to // determine whether it represents a call to sync/atomic.AddUint32 to // increment a coverage counter. func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool { if cn.Fun.Op() != ir.ONAME { return false } name := cn.Fun.(*ir.Name) if name.Class != ir.PFUNC { return false } fn := name.Sym().Name if name.Sym().Pkg.Path != "sync/atomic" || (fn != "AddUint32" && fn != "StoreUint32") { return false } if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR { return false } adn := cn.Args[0].(*ir.AddrExpr) v := isIndexingCoverageCounter(adn.X) return v } func postProcessCallSites(profile *pgo.Profile) { if base.Debug.DumpInlCallSiteScores != 0 { budgetCallback := func(fn *ir.Func, prof *pgo.Profile) (int32, bool) { v := inlineBudget(fn, prof, false, false) return v, v == inlineHotMaxBudget } inlheur.DumpInlCallSiteScores(profile, budgetCallback) } }